
16
Detecting and Managing Irregularities

This chapter addresses the topic of regression diagnostics. Diagnostic
statistics are useful for identifying cases in an analysis that are “irreg-
ular” in some way. We introduce leverage, distance, and influence as
measures of irregularity and discuss how irregular cases may distort a
regression analysis and so are worth identifying prior to interpretation
of the results. We describe how diagnostic statistics can be used for
testing whether the assumptions of linear regression analysis are met,
introduce some ways of dealing with assumption violations, and discuss
how violations may affect the validity of the inferences one makes using
regression analysis.

All too many investigators discover clerical errors in their data, such as
inputting a person’s age or a response to a question on a survey incorrectly,
only after they have already spent hours on their data analysis and have
perhaps reached conclusions that are hard to erase from their minds. Or af-
ter publication, a critic may point out that the researcher’s main conclusion
depended entirely on one research participant who was very unusual and
perhaps should not have even been included. Some statistical techniques
designed for avoiding mishaps like these are the topic of this chapter. We
discuss some methods of detecting cases that are somehow “irregular,”
which we define later in a number of ways. We talk about what to do when
they are detected and methods you might consider employing if you are
worried about the effects such irregularities may have on the quality of the
inferences you report. We provide only a rough overview of these topics,
which can be quite complicated. A more extensive treatment of some of
the topics we discuss and others we don’t can be found in Berry (1993), Fox
(1991), and Kaufman (2013), among others.
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16.1 Regression Diagnostics

In the evolution of regression analysis, diagnostic statistics are relatively
new, having been developed mostly since 1975 or so. These statistics have
several purposes. First, they can help to detect clerical errors, such as
inputting a person’s height as 720 inches rather than 72, which can seriously
distort an entire analysis if not caught. Second, they can detect violations
of the secondary assumptions of homoscedasticity and normality. Third,
they can be used to examine data that are suspect for some reason, such
as questionnaire results from someone who appeared not to understand
directions, to determine whether those data are irregular in some way.

Diagnostic statistics can also be used to identify cases whose presence
in the analysis are greatly influencing the results. For this reason, they can
easily be misused. For instance, using some of the statistics and methods in
this chapter, a clinical psychologist could find that three people in a study,
if deleted from the analysis, could improve the apparent effectiveness of
a therapeutic method he or she developed. This discovery could lead the
psychologist to look at the files of these patients and find some rationale
for excluding them. But any tool can be misused, and diagnostic statistics
are an important part of regression analysis. The best protection against
misuse is to require authors to explain in detail the reasons for deleting any
cases and the ways in which those deletions affected the major conclusions.
Although you can be faulted for your decision to exclude cases, you can’t
be accused of misconduct or unethical behavior if you are open about what
you have done.

Diagnostic statistics may also occasionally detect violation of the pri-
mary assumption of linearity. But intuition suggests that they would not be
nearly as powerful for that purpose as the methods discussed in Chapter
12, and our own analyses confirm that conjecture. For example, in a small-
scale simulation study, we found that a test on the regression coefficient for
X2 to detect curvilinearity correctly detected real nonlinearity 98% of the
time, while an approach we describe in section 16.2.4 detected nonlinearity
only 33% of the time.

One of the best ways of detecting irregularities is to search for cases that
are “extreme” in one sense or another. Such cases are often called outliers,
though we confine that term to a particular type of extreme case.
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16.1.1 Shortcomings of Eyeballing the Data

When computers were in their infancy, one of the major arguments given
against their use in data analysis was that computer analysis made it easier
to overlook extreme or unusual cases, even when they reflect obvious errors
such as adult human weights of 16 or 1,600 pounds. Most likely, this is a
clerical error of some kind that should be fixed before data collection. One
simple way of catching extreme cases such as this is to scan the data file
with your eyes, just looking for things that seem amiss. This is easy to do
if the data file is small, but with large data sets with many variables, such
“eyeballing” of the data may miss important irregularities.

Statistical computer programs quickly met the objection mentioned
above by making it easy to identify the highest and lowest score on ev-
ery variable, so that such extreme cases can be called to the investigator’s
attention. We recommend that prior to conducting an analysis, you ask
your computer program to print the smallest and largest values of every
variable in the data. Doing this would condense information about extreme
cases for all the variables into one small output and make it easy to detect
problems, such as someone whose weight is 1,600 pounds or who is −4.5
years old. Such values in the data are likely to show up as the minimum
or maximum value for the variable. If you see something like this, fix it
or otherwise investigate the source of the problem. Maybe you or your
research assistant simply mistyped a weight when entering the data. Or if
the data were collected by a computer program, maybe there is a bug in
the program that generates incorrect data in certain circumstances.

Today’s computer programs allow us to go far beyond this basic step.
Using statistics discussed in this chapter we can detect irregularities that
could never be discovered by eyeballing the data or looking at maximums
and minimums. For instance, suppose your data file contains information
about employees at a particular company, and the records for one employee
in your data include the following information:

• Present salary: $30,000

• Hours worked per week: 20

• Starting salary: $20,000

• Hours worked per week on starting: 40

• Number of years worked: 2
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This case is very unusual, though it isn’t obvious how unless you think
carefully about it. Notice that the employee earns the equivalent of a full
time employee (40 hours per week) who makes $60,000 per year. But only
2 years ago, when the person was working full time, he or she was making
only $20,000, so the employee’s salary is three times what it was only 2 years
ago. Most people don’t get such large raises so quickly. Such an unusual
case may represent a clerical error or some other factor worth checking.
But ignoring any one of the five entries in this person’s file would make
the case appear normal. For instance, if “number of years worked” were
not shown, we might assume it was 10 or 20 instead of 2, and the case
would appear normal. A similar argument can be made about any of the
other entries. Only when all five entries are considered together is the
case identified as unusual. But if these five entries were scattered among
20 or 30 other entries about the same employee, it is highly unlikely that
eyeballing of the data matrix would reveal anything amiss. Nor would this
case likely be brought to our attention if we look only at the minimum and
maximum values across all the employees on all five of these variables.
Some regression diagnostic statistics can easily detect such cases.

16.1.2 Types of Extreme Cases

A case can be extreme or otherwise noteworthy in three major ways, all of
which can be quantified. A case has high leverage if its pattern of regressor
scores (ignoring Y) puts it far from most or all other cases. Speaking a bit
loosely, cases with the highest distance are those whose vertical distance
from the regression surface is greatest. Influence measures how much a
case’s presence in the analysis actually moves the regression surface. As
we see later, there is a sense in which influence is the product of leverage and
distance, so high influence requires both high leverage and high distance.

The distinctions among distance, leverage, and influence are illustrated
most easily in simple regression. Consider the data set in Figure 16.1.
Suppose the sample contains only the 37 cases represented with a solid
square. If you regressed Y on X for only these 37 cases, the resulting model
would be Ŷ = 4.0 + 0.0X. Now suppose you added case A to the data,
denoted with a hollow square in the figure, bringing the sample size to 38.
This case is extreme in the distribution of X. But if case A is included in
the analysis, the regression model is unaffected; it is denoted with the thin,
solid black line, and its equation is identical: Ŷ = 4.0 + 0.0X. This case is
high in leverage, low in distance, and low in influence.
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FIGURE 16.1. The influence of adding one case (represented with a hollow triangle, cir-
cle, or square) to a regression model containing 37 cases (represented with solid squares).

But now suppose you added only case B, denoted with the the hollow
triangle. It is unusual on Y but quite ordinary on X. If it were included
in the analysis, Ŷ = 4.160 + 0.0X, depicted with the dashed line. The
regression constant has changed slightly, but the regression coefficient for
X has not changed at all. This case is low in leverage, high in distance, and
low in influence.

Finally, suppose you added only case C, denoted with the hollow circle.
When it is included in the analysis, Ŷ = 3.372 + 0.184X, represented in
the figure with the solid dashed line. Case C is high in leverage, high in
distance, and high in influence. If leverage is potential to influence, then
case C has realized that potential, whereas case A has not.

Users of regression analysis often focus on residuals when looking for
extreme or influential cases, paying close attention to cases with large
residuals (i.e., large distance). But this example shows that residuals are
not necessarily the best way to identify influential cases, because cases that
influence a regression analysis can “hide” by shrinking their own residual.
Notice that case C pulls the regression line toward it, cutting its residual by
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about 20%. Better would be some kind of a statistic that quantifies a case’s
residual relative to what it would be if the case weren’t in the analysis.
There is a measure of this, and we discuss it.

Complicating your learning of regression diagnostics, terminology is
not standard, and there are many statistics in the literature that are not
aptly named. For example, there is a measure called Cook’s distance that we
discuss later, but it is really a measure of influence rather than distance. An-
other statistic, called Mahalanobis distance, is a measure of leverage, because
it quantifies how unusual a case’s pattern of regressor scores is.

Cases with high leverage are here called leverage points. A case high in
leverage has the potential to be influential, but it may not be. Cases high in
distance are here called outliers, though other writers often use this term to
describe any kind of extreme or unusual case. Cases high in influence are
here called influential cases or influential points.

Leverage differs qualitatively from distance, in that cases extreme in dis-
tance can invalidate statistical inference in regression. But extreme leverage
violates none of the standard assumptions of regression, because regression
analysis makes no assumption about the distribution of regressors.1 But
high-leverage cases can affect power and precision of estimation. Consider
a single dichotomous regressor such as sex. If a sample includes 90 men
and 10 women, the difference between men and women on Y is going to
be estimated with less precision than if the sample includes 50 men and 50
women. But the 10 women are going to be much higher in leverage than
the 90 men.

16.1.3 Quantifying Leverage, Distance, and Influence

There is a variety of different ways that leverage, distance, and influence
can be measured, depending on how you think about these concepts, and
we talk about only some of them. They are all interrelated in one way or
another.

Leverage. We start first with leverage, which we defined earlier as the
atypicalness of a case’s pattern of values on the regressors in the model.
A case in a data set may have quite ordinary values on the individual
regressors, but its combination of regressor values might be quite unusual.
For instance, being 55 and being pregnant each are not particularly unusual

1There is a common misconception that regression analysis assumes normally distributed
regressors. This is not true. We have seen that dichotomous variables can be used as
regressors, and ANOVA is just a special case of regression analysis with dichotomous
regressors. But dichotomous variables are by definition not normal.
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if you were to randomly sample people from a broad population, but if
pregnancy and age were both regressors in a regression model, then a 55-
year-old pregnant woman would have high leverage since this combination
would be very unusual in almost any sample (except perhaps a sample from
a population of older pregnant women).

Consider a single variable X1 used as a regressor in a simple regression
model Ŷ = b0 + b1X1. Quantify the discrepancy between X1 and X1 for case
i in standard deviations of X1, and then square this result. This is just the
squared standardized value of X1 for case i:

Z2
X1i
=

(
X1i − X1

sX1

)2

(16.1)

The farther case i’s X1 value is from the mean of X1, the larger is Z2
X1i

. Z2
X1i

cannot be negative, and it will be zero only if X1i = X1. Z2
X1i

is known as
the Mahalanobis distance for case i, which we denote as MDi, but it is really
a measure of leverage rather than distance as we have defined the terms.
Note that although we have introduced this statistic in the context of a
simple regression model, Y is not used in its computation at all.

As defined in equation 16.1, we might call MDi univariate Mahalonobis
distance, because it is a measure of case i’s atypicalness on a single variable.
But Mahalanobis distance can be defined more generally in a multivariate
form that considers a case’s atypicalness on a set of regressors. Suppose we
have a second variable X2, and we want to calculate case i’s atypicalness in
its pattern of values on X1 and X2 considered jointly. You might think we
could just calculate Z2

X2i
for X2 in a comparable way and then add it to Z2

X1i
to get a multivariate Mahalanobis distance that considers both X1 and X2.
The trouble with this reasoning is that if X1 and X2 are correlated, this sum
would contain some redundancy. The stronger the correlation between X1

and X2, the more likely a case is to be atypical on both, and this sum would
double-count part of the discrepancy. A preferred multivariate measure
would quantify case i’s atypicalness on X2 accounting or adjusting for the
correlation between X1 and X2.

Recall from section 2.4.2 that the residuals in a regression are uncorre-
lated with the regressor or regressors. Later, in section 3.2.2, we showed
that if we regress X2 on X1, then the residuals from this regression, X2.1, are
uncorrelated with X1, making X2.1 a measure of X2 that has been purified
of its linear relationship with X1. With these residuals calculated, we can
then quantify how atypical case i is on X2.1, the part of X2 independent of
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X1, using the same logic as above. Case i’s atypicalness on X2 controlling
for X1 is

Z2
X2.1i
=

⎛⎜⎜⎜⎜⎝X2.1i − X2.1

sX2.1

⎞⎟⎟⎟⎟⎠
2

(16.2)

but because X2.1 = 0 (residuals always have a mean of zero), equation 16.2
simplifies slightly to

Z2
X2.1i
=

(
X2.1i

sX2.1

)2

The farther case i’s X2.1 value is from zero, regardless of sign, the larger
is Z2

X2.1i
. Now we can add Z2

X1i
and Z2

X2.1i
to get MDi, the Mahalanobis

distance for case i on the set of regressors X1 and X2. The larger MDi, the
more atypical is case i’s pattern of values of X1 and X2.

You might wonder what would happen if we reversed the order of
computations above, starting first with X2 and then generating the residuals
from regressing X1 on X2 to generate X1.2. It turns out that this doesn’t
matter. MDi will be the same. We can then further extend this logic to
k regressors by adding successive values of Zji to those that come before,
i.e., Z2

X3.12i
, Z2

X4.123i
, and so forth. The resulting MDi calculated as the sum

of all these k values of Z2 will not be affected by the order of the partialing
process.

MDi will tend to be large for cases that are more distant from the center
of a multivariate space defined by the joint distribution of the k regressors.
But when statisticians use the term leverage in regression analysis, they are
often not talking about MDi but rather a different statistic hi, which is often
labeled case i’s hat value. It is difficult to talk about the computation of hi

without using matrix algebra, so we refer interested readers to Appendix
D where we provide the formula. It turns out that hi is perfectly linearly
correlated with MDi. That is, their correlation across all N cases is exactly
1. So we know the case highest on MDi is also highest on hi, the case that is
second highest on MDi is second highest on hi, and so forth. Unlike MDi,
which has no upper bound, hi is always between 1/N and 1. Furthermore,
h = (k + 1)/N. From now on, whenever we make specific references to
“leverage” in computations, we are referring to h and not MD. As we will
see, h appears in the computation of many regression diagnostics, so it has
more value in regression diagnostics analysis than MD.

In large data sets with more than a couple of regressors, there will often
be one or two cases with large values of MDi and hi that stand out in the
distribution relative to others. But in small samples, or when considering a
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small number of regressors, it would not be uncommon to find several cases
with large values. For instance, from the weight loss data set in Table 3.1,
the largest MDi calculated using exercise frequency and food intake is 2.500
and the largest hi is 0.378. But four of the 10 cases have these largest values.
So really they aren’t atypical at all. Thus, these aren’t perfect measures of
atypicalness, but they generally are sensitive to the concept as most people
would think about it.

Distance. Distance measures how far case i’s Y value deviates from
Ŷi. Cases with extreme distance are outliers. Such cases are more impor-
tant than leverage cases because a sufficiently extreme outlier represents a
violation of at least one of the standard assumptions of regression, while
leverage points do not. An outlier may or may not have high leverage.

Outliers can be the result of clerical errors, so it is always worth checking
that first. Assuming any outliers found are legitimate values, they may
suggest revisions to the model are needed. For instance, if 80% of the cases
in a sample were women and 20% were men, and most of the outliers were
men, this might mean you need different models for men and women,
and the predominance of women in the sample forces the model to fit the
women’s data. Thus, developing separate models for men and women,
perhaps through the methods discussed in Chapters 13 and 14, may be
appropriate. Or if there are too few men to develop a separate model for
men, a large number of male outliers may suggest that they be excluded
from the sample and that the conclusions of the model be applied only to
women.

The most obvious measure of distance is a case’s residual ei = Yi − Ŷi,
but residuals can be refined. Cases with high leverage tend to pull the
regression surface toward them more than other cases do, thereby shrinking
their own residual. So residuals can be adjusted for the case’s leverage. We
can define a leverage corrected residual as ei/

√
(1 − hi). Leverage-corrected

residuals are rarely actually used, but an interesting fact is that the square
of a leverage-corrected residual equals the amount SSresidual would drop if
case i were excluded from the analysis.

The expected value of the squared leverage-corrected residual is
TVar(Y.X), which is estimated by MSresidual. So leverage corrected resid-
uals can be standardized by dividing them by

√
MSresidual, as

stri =
ei√

(1 − hi)MSresidual
(16.3)
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In large samples, residuals transformed by equation 16.3 are normally dis-
tributed with a mean of zero and a standard deviation of one. An additional
transformation

tri = stri

√
dfresidual − 1

dfresidual − str2
i

results in residuals that are exactly t-distributed with dfresidual − 1 degrees
of freedom. We will refer to these as t-residuals.2 Because t-residuals
are exactly t-distributed, they are useful for testing some of the standard
assumptions of regression, as discussed in section 16.2. The transformation
of stri to tri does not change the relative ordering of the cases on these
measures of distance. Their rank correlation will be 1.

Earlier we said that cases with high leverage tend to pull the regression
surface toward them more than cases with low leverage, thereby shrinking
their own residuals. We also just said that tri quantifies distance for case i
in reference to its Ŷi when it is excluded from the analysis. It turns out hi

has a similar interpretation. Define ei as case i’s ordinary residual Yi − Ŷi

and define dei as Yi − Ŷi,not i, where Ŷi,not i is defined as in section 7.2.3, as
case i’s estimate of Y derived from the model estimated without case i. It
turns out that

hi =
dei − ei

dei

In words, hi equals the proportion by which case i lowers its own residual
by pulling the regression surface (i.e., the model that produces Ŷ for all
cases) toward itself. Consider, for instance, a case with a residual of 6,
meaning its Y is 6 points above its Ŷ. If that case’s residual would be 8
points above its Ŷ if it were excluded from the analysis, then that point’s
hi is (8 − 6)/8 = 0.25 since inclusion of the point has pulled the regression
surface 25% of the way toward the point. Thus, the highest possible value
of hi is 1. The lowest possible value is 1/N; a case exactly at the mean
on all regressors but above or below the mean on Y will not change any
regression coefficients, but it will pull the entire regression surface up or
down 1/Nth of the point’s distance from the surface’s previous location.
This may be the simplest single definition of hi, but it can’t be considered
the primary definition, because it obscures the important fact that hi is
computed without reference to Y. That is, hi is determined entirely by the

2Terminology is inconsistent in the literature and computer software. What we call t-
residuals other authors and some statistics programs call studentized residuals. A distinc-
tion is also made by some authors between internally studentized residuals and externally
studentized residuals. In our notation, these are stri and tri, respectively. SPSS produces
something it calls standardized residuals, but these are something different still.
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regressors, not by Y. It also reduces to an indeterminate form when dei = 0,
but hi is just as precisely defined for such cases as for any other case. But
hi is not really a measure of distance, even though we have included this
manner of defining hi in this section.

Influence. The influence of a case is quantified by the extent to which its
inclusion changes the regression solution or some aspect of it, such as the
estimates it generates for Y. It is the cases that most change the regression
surface by their inclusion in the analysis that we are most concerned about
and wish to identify for further scrutiny. There are many ways one can
measure influence. We restrict our discussion here to how the inclusion of
case i changes Ŷ for all cases or how bj is changed by the inclusion of case i.
But these aren’t the only ways of quantifying influence; a case could have
little influence on a regression coefficient or Ŷ, but its presence in a model
could greatly influence R or SE(bj), for instance.

The standard measure of a case’s influence on the regression surface
was suggested by Cook (1977), and is here denoted Cooki. This measure
is inappropriately named Cook’s distance; Cook’s influence would be better.
Cooki is proportional to the sum of squared changes in values of Ŷ across all
cases when case i is deleted from the analysis. To be precise, let dij denote
the change in the value of case j’s residual when the residuals are rederived
after case i is deleted from the analysis. Then

Cooki =
ΣN

j=1d2
i j

k ×MSresidual

where k is the number of regressors. Thus, Cooki is a measure of the
amount values of Ŷ move when case i is deleted from the analysis. It can
be thought of as the product of a particular measure of distance and a
particular measure of leverage. The key formula is

Cooki = str2
i ×

hi

(1 − hi)(k + 1)

As discussed earlier, stri ranks cases in the same order as tri, the best
measure of distance from the regression surface. And all the rest of the
right side is a measure of leverage in that it ranks cases in the same order
as hi.

Some have stated that Cooki is distributed as F with k + 1 and N − k − 1
degrees of freedom. But, in fact, the mean of an F distribution is always
over 1, and values of Cooki are rarely found as high as 1. Also, the standard
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assumptions of regression do not require any particular distribution for hi,
but hi has a major effect on Cooki, so no general rule can be stated for the
distribution of Cooki.

In multiple regression we can distinguish between total influence and
partial influence. Whereas Cooki measures the influence of case i on the
entire regression model, as manifested by what it generates for Ŷ for each
and every case, partial influence measures a case’s influence on a specific
regression coefficient bj. If, say, 10 regressors include nine covariates and
one independent variable X1, then we may be more concerned about cases
that substantially affect b1 than about cases with high total influence. Thus,
if your focus is on a specific regressor j, you may be particularly concerned
about identifying cases that have a lot of influence on that specific bj, but
care little or not at all about how any case influences any of the other k − 1
regression coefficients or the regression constant.

A statistic called df betai quantifies how much case i influences a specific
regression coefficient. In a regression model with k regressors, there are
k+ 1 dfbeta values for each case, one for each regression coefficient and one
for the constant. We will denote the df betai for regressor j as DB(bj)i. It is
defined as

DB(bj)i = bj − bj,not i

where bj,not i is bj when case i is excluded from the analysis. For instance,
if bj = 1 but bj,not i = 0.25, then DB(bj)i = 0.75, meaning that including case
i in the analysis raises bj by 0.75. Large values of DB(bj)i relative to other
cases suggests that case i is having a big effect on the estimate of the Xj’s
partial relationship with Y. It can be shown that

DB(bj)i =
eiceij

N(1 − hi)Var(Xj)Tolj

where ceij is the residual for case i in the crosswise regression predicting Xj

from the other regressors.

16.1.4 Using Diagnostic Statistics

The analysis of regression diagnostics is as much art as science. The ultimate
objective is to flag any cases in the data that are unusual or extreme in
some fashion for closer scrutiny. Some authors provide rules of thumb for
deciding whether a certain diagnostic statistic is too large or offer ways of
testing hypotheses about whether a certain diagnostic is larger than you
would expect to observe by chance. These hypothesis tests and rules of
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thumb make assumptions about the distribution of various diagnostics,
but extreme cases may make those assumptions less tenable. So, with one
exception mentioned here and later in section 16.2, we recommend instead
a descriptive and holistic approach in which you look at the distribution
of each of the diagnostics, notice those that really stand out as unusual
relative to others, and see if there are some cases in the data that seem to
consistently come to your attention using various diagnostics.

We illustrate this approach using the data set in Table 16.1. The 12 cases
in the data represent two groups coded X1 = 0 and X1 = 1, such as an
experimental and a control condition, along with two numerical variables,
X2 and X3. The diagnostic statistics in Table 16.1 are generated from a
regression estimating Y from X1, X2, and X3.

As already mentioned, one of the first uses of diagnostic statistics is
to identify clerical errors or other problems that may have occurred at the
data entry or data generation stage of the research. We discussed the use
of leverage for this purpose, as cases with an unusual pattern of scores on
the regressors will often show up as high in leverage. A leverage measure
such as hi can be useful for the identification of such errors and supplement
what can be learned by looking at the minimum and maximum values. We
provided an example of how the minimum and maximum values may fail
to detect a case with an unusual pattern of values in section 16.1.1.

The data in Table 16.1 provide another illustration of how simple eye-
balling of the data or the use of maximum and minimum values can fail to
uncover extreme cases. In these data, the third case is highest in leverage,
with values of MDi and hi of 7.157 and 0.734, respectively. These values are
no less than 75% larger than the corresponding statistics for the case with
the next highest leverage. But only very careful examination shows that
the value of 11 for X2 is unusual not by itself but in relation to its X3 value.
Notice that all cases with relatively small values of X3 also have values of
X2 that are relatively small, and that this is true regardless of whether X1

is 0 or 1. But not so for case 3, which has quite a large value of X2 even
though this case’s X3 value is relatively small. So it doesn’t fit the pattern
of the association between X2 and X3. Yet examining case 3’s values of
X1, X2, and X3 individually reveals nothing extreme or unordinary about
this case, and 11 is neither the maximum nor the minimum value of X2 in
the data, so looking at the minimums and maximums would not flag this
case as unusual. Measures of leverage have flagged this case as worthy of
further attention. If these were your data, you might take a look at the data
collection records to see whether X2 was entered incorrectly for this case
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or otherwise examine your measurement system to see if something went
awry.

We might worry that case 3, because of its unusual pattern of values on
the regressors, may distort the regression surface in some way. Diagnostic
statistics can help identify whether this is so for case 3, or perhaps for
some other case in the data. Starting first with distance, cases with a
large discrepancy between Y and Ŷ can suggest a violation of one of the
assumptions of regression, such as normality or homoscedasticity. We
recommend the use of the t-residual as the best measure of distance rather
than relying on stri or ei. In section 16.2 we discuss a way of using the t-
residuals for testing whether one of the assumptions of regression has been
violated. For now, notice that case 3’s t-residual is not particularly large in
absolute value. We might be more concerned about case 8, with a t-residual
of 2.563. You would expect only 1 in 29 cases in a regression analysis to
have a t-residual this large or larger in absolute value if the assumptions
of regression have been met. So in a sample of only 12 cases, this residual
stands out as potentially unusual or uncommon to observe. But as will be
seen in section 16.2.4, we would want to correct this probability for the fact
that we have looked at 12 residuals rather than just 1 before claiming we
have violated an assumption. This should remind you of the multiple test
problem discussed in Chapter 11.

Remember that MDi and hi measures the atypicality of a case i’s pattern
of regressor values. Neither of these statistics is calculated in reference to
Y. It could be that the large residual observed for case 8 reflects some kind
of data entry error for Y. This would be worth checking. You could also
calculate MDi or hi while treating Y as if it were a regressor. This could
be accomplished by requesting your computer to produce one of these
leverage measures when regressing some other variable in the data set on
X1, X2, X3, and Y. The dependent variable could even be a set of random
numbers since the dependent variable is not used in the computation of
leverage. When we did so, we found that case 8’s leverage was not partic-
ularly large (though it was the second largest out of 12, it didn’t stand out
much from many of the other cases), thereby reducing our concern that its
large t-residual is due to a clerical or computational error of some kind.

A case can be influential in that it changes Ŷ a lot for all cases in the
data, or it could be influential in its effect on one or more of the regression
coefficients. The former is measured with Cooki and the latter with DB(bj)i.
Observe that case 3, our case with the highest leverage, has a tiny Cook value.
Notice as well that the regression coefficients and regression constant, as
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measured by the DB(bj) statistics, are barely affected at all by the inclusion
of case 3. It has very little influence. The inclusion of case 8 (the case with
the largest distance as well) has the biggest influence in shifting all cases’
Ŷ values around, because it has the largest value of Cook. Observe as well
that it has the largest DB(b1) in absolute value. Its value of DB(b1) = 0.945
means that b1 is 0.945 larger than it would be if this case were excluded
from the analysis. With the case included, b1 = 2.832, which means that
if this case were excluded, b1 = 1.887. If X1 coded a treatment or control
condition, then including this case makes the adjusted mean difference in
Y between the groups 0.945 units larger than it otherwise would be. But
note that this value of DB(b1) is not particularly large relative to some of the
other cases. Observe that cases 2 and 7 have values of DB(b1) that are not
much smaller than 0.945 in absolute value. And whether case 8 is included
or excluded does not influence whether we claim a statistically significant
partial association between X1 and Y in these data.

16.1.5 Generating Regression Diagnostics with Computer
Software

Most good regression programs have options for saving and displaying
various regression diagnostics for examination and analysis. Different pro-
grams use different labels in the code for generating the same statistic, so
take a close look at your program’s manual to make sure that you under-
stand what is being generated.

The SPSS command below will generate all the regression diagnostics
we have discussed in this chapter.

regression/dep=y/method=enter x1 x2 x3/

save pred resid dresid sresid sdresid cook mahal leverage dfbeta.

The options following the save command produce, respectively, Ŷi, ei,
dei, stri, tri, Cooki, MDi, hi − (1/N), and DB(bj)i. These diagnostics are
inserted into the data file, though not in this order. Note that SPSS produces
something called the “centered leverage” rather than hi. To convert centered
leverage to hi, add 1/N to the centered leverage. SPSS labels some of these
diagnostics differently than we have. For instance, what we are calling the
t-residual, SPSS calls the “studentized deleted residual.”

The SAS code below accomplishes something similar:
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proc reg data=chap16;

model y=x1 x2 x3/influence;

output out=ch16diag p=pred r=resid student=str rstudent=t

cookd=cook h=h;run;

proc print data=ch16diag;run;

This code produces a new file (named “ch16diag” in the code above) con-
taining values for each case for all regressors and Yi as well as Ŷi, ei stri, tri,
Cooki, and hi, and prints these values on the screen. The influence option
following the model command outputs (though does not save) DB(bj)i val-
ues, though these are expressed in standardized form, meaning standard
errors from the estimate of bj. See the SAS documentation for guidance.

STATA can also generate diagnostic statistics from a regression analysis.
For instance, the code below generates Ŷi, ei, hi, stri, tri, and standardized
DB(bj)i. The text prior to the comma provides a variable name for the diag-
nostics saved into the data file. The list command prints the diagnostics
on the screen.

regress y x1 x2 x3

predict pred,xb

predict resid,residuals

predict h,hat

predict str,rstandard

predict tr,rstudent

predict dbb1,dfbeta(x1)

predict dbb2,dfbeta(x2)

predict dbb3,dfbeta(x3)

list pred resid h str t dbb1 dbb2 dbb3

The RLM macro described in Appendix A will produce all the diagnos-
tics discussed in this chapter, except for the df beta values, by adding the
diagnose=1 option to the RLM command. The diagnose option also gener-
ates output showing the minimum and maximum values of the regressors
and the outcome, Ŷ, and a few of these diagnostics. See the documentation
in Appendix A.

16.2 Detecting Assumption Violations

In Chapter 4 we introduced the assumptions of linearity, normality, and ho-
moscedasticity. In this section we describe some approaches to detecting
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violations of these assumptions. These assumptions can be tested individ-
ually or they can be tested as a set, though testing them as a set provides
only the vague conclusion that an assumption is violated without specify-
ing which one.

16.2.1 Detecting Nonlinearity

Under the assumption of linearity, the expected value of the errors in es-
timation of Y for any combination of regressors is zero. Residuals can be
used to determine whether the linearity assumption is violated, but none
of the methods based on a residual analysis that you will find described
here or in other books is likely to be as good at detecting nonlinearity as
the methods discussed in Chapter 12.

In section 2.4.4 we provide an example of a nonlinear relationship,
depicted in Figure 2.7 and replicated here in this section in Figure 16.2,
panel A. The best-fitting line of the form Ŷ = b0+b1X is found superimposed
on the scatterplot. Notice that for both relatively large and relatively small
values of X, the residuals are predominantly negative, but for moderate
values of X, the residuals are predominantly positive. Figure 16.2, panel B,
depicts the t-residuals generated from Ŷ = 3.289 − 0.220X, the best-fitting
linear regression line, against X (the solid line in Figure 16.2, panel A).
Notice the obvious pattern, with negative residuals for extreme values of
X and positive residual in the middle of X. This kind of pattern, with
residuals that are systematically positive or negative in certain ranges of
the regressor, suggests that the relationship between X and Y is not well
described as linear. Figure 16.2, panel C, is a comparable plot of t-residuals
from the quadratic model Ŷ = 1.254 + 1.587X − 0.359X2. The quadratic
model itself is depicted with the dotted line in Figure 16.2, panel A. In
the scatterplot of t-residuals against X, there appears to be no systematic
tendency for residuals to be positive or negative in certain ranges of X,
suggesting that any nonlinearity that does exist in the relationship between
X and Y is well described by the quadratic model.

For models with more than one regressor, comparable plots of residuals,
such as those in Figure 16.2, can be generated with Ŷ on the X-axis. Alter-
natively, a residual scatterplot can be used to check for evidence of partial
nonlinearity. For instance, if you are concerned that the partial relationship
between X1 and Y is nonlinear when you control for X2, you can regress Y
on X1 and X2, generate the residuals from this regression, and then plot the
residuals against X1, looking for evidence of nonlinearity in the plot.
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FIGURE 16.2. A nonlinear relationship (panel A) and the t-residuals from a model without
(panel B) and with (panel C) the square of X as a regressor.

Intuition tells us that the conclusions we reach with an “eyeball” test of
nonlinearity should be treated with a grain of salt. Looking at scatterplots
such as these will tend to reveal only obvious nonlinearity, such as in this
example. More subtle nonlinear relationships, such as a shallow curve, are
not likely to be detected with the eye. There is also the possibility that your
brain may detect a pattern in what is really just a random dispersion of the
residuals in the plot. Systematic tests of nonlinearity described in Chapter
12 not only are superior, for they may detect nonlinearity we may not see,
but also protect us from misinterpreting random variation as nonlinearity.
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16.2.2 Detecting Non-Normality

Regression analysis assumes that the conditional distributions of Y are
normal or, equivalently, that the errors in estimation of Y are normally
distributed conditioned on the regressors. Some authors recommend con-
structing a histogram of the residuals (either ei or tri) and eyeballing the
histogram to see if you can detect evidence of non-normality. The two prob-
lems with this approach are just as described in the section on detecting
nonlinearity—that we often see non-normality that really is just random
variation, or we fail to see real non-normality when it exists. The eye is
good at detecting only obvious non-normality, just as it is good at detecting
only obvious nonlinearity. The second problem is that a histogram of the
residuals reflects only the marginal distribution of the errors in estimation,
ignoring the conditioning that is part of the assumption. The counter to
this concern is that if the marginal distribution of the errors in estima-
tion is non-normal, mostly likely so too is one or more of the conditional
distributions.

There are formal tests of non-normality of the errors in estimation that
one could apply. But they can detect non-normality that is trivial and not
likely to affect the accuracy of the inferences one is making with a regression
analysis. In Chapter 12 we discussed various transformations that can be
used to reduce nonlinearity in relationships that also can have the effect of
reducing non-normality in errors in estimation. But they carry with them
the disadvantage that transformed metrics may be harder to interpret, and
it can be perceived by potential critics as arbitrary and used in an attempt
to make results cleaner than they actually are.

Our perspective is that unless you see clear evidence of fairly extreme
non-normality in the residuals and have ruled out the existence of clerical
errors and highly influential cases using the methods discussed in section
16.1.3, don’t worry too much about all but extreme violations of normality.
It turns out the normality assumption is one of the least important of the
assumptions of regression for most of the widespread uses. You might
also consider verifying that your results replicate when using one of the
methods we discuss in section 16.3 that make weaker assumptions about
the errors in estimation. But if the non-normality is inherent in the system of
measurement of Y, such as the result of using a single-item ordinal response
scale (e.g., strongly disagree, disagree, agree, strongly agree) or small counts of
things (e.g., how many televisions a person has), consider learning about
one of the methods discussed in Chapter 18 designed for the modeling of
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ordinal, discrete, or count outcomes, which are non-normal by definition
or turn out to be so in most applications.

16.2.3 Detecting Heteroscedasticity

In most simple terms, homoscedasticity means that the conditional distri-
butions of Y have equal variances. The assumption is most easily described
in the context of simple regression and states that TVar(Y.X) is the same re-
gardless of X. Because the conditional distribution of Y is centered around
Ŷ, the assumption can also be expressed in terms of the variance of the
errors in estimation TVar(e.X). Figure 16.3, panel A, depicts a sample of 500
cases from a population regression model Ŷ = 5+ 0.25X with homoscedas-
tic errors. As can be seen, there is no apparent pattern in the distribution
of the residuals or, alternatively, the conditional distribution of Y given X.
The residuals appear roughly equally dispersed around the regression line.
It appears that the dispersion of Y given X is the same regardless of X.

In the description above, as well as what follows below, we can replace
X with Ŷ, which, of course, is a linear combination of k values of Xj, the
regressors in the model. That is, the assumption pertains to the conditional
distribution of Y for the linear combination of k values of Xj that is Ŷ.

Violation of this assumption is known as heteroscedasticity. The most
common type of heteroscedasticity occurs when TVar(Y.X), the true con-
ditional variance of Y given X, is largest for the highest or lowest values
of some regressor or combination of regressors, a situation we could call
ordinary heteroscedasticity. Figure 16.3, panel B, depicts such a situation,
where the variability of Y and therefore ei is larger for higher values of X or
Ŷ. Two alternative forms of heteroscedasticity are butterfly heteroscedas-
ticity, as in Figure 16.3, panel C, and inverse butterfly heteroscedasticity, as
in Figure 16.3, panel D. In butterfly heteroscedasticity, the conditional dis-
tribution of Y is larger at more extreme values of X or Ŷ, and in inverse
butterfly heteroscedasticity, variability in Y is largest in the middle of the
distribution of X or Ŷ.

In Figure 16.3 we place Y and X on the axes of the figures. But you
could replace the Ys with residuals to produce partial scatterplots (see, e.g.,
Figures 3.10 and 3.12). When testing the significance of the regression coef-
ficient for Xj or producing confidence intervals for Tbj, we would assume
partial homoscedasticity, meaning that the variance of the errors in the esti-
mation of Y when controlling for all regressors but Xj is uncorrelated with
Xj when holding all other regressors constant.
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FIGURE 16.3. Scatterplots and the linear regression of Y on X reflecting homoscedastic-
ity (panel A), ordinary heteroscedasticity (panel B), butterfly heteroscedasticity (panel C),
and inverse butterfly heteroscedasticity (panel D).

Heteroscedasticity can occur in a number of ways. One way is the
existence of an interaction involving one regressor and another variable that
may or may not be one of the regressors in the model. For instance, we could
imagine in Figure 16.3, panels B or C, drawing two lines relating X to Y, one
for group A and another for group B, that differ in slope but are opposite in
sign. By ignoring the existence of two subpopulations, each with a different
relationship between X and Y, and estimating a single regression coefficient
for X can produce a pattern of residuals or conditional distributions of Y
that look like those in panel B or C. Including an interaction in the model
can eliminate heteroscedasticity.
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A second situation that can produce heteroscedasticity occurs when the
population of interest is composed of two subpopulations, with one ranging
more widely than the other on all the variables. For instance, consider
natives born in a specific country and immigrants not born there. The
immigrants will typically be from many nations and continents, while the
natives by definition are from one. The immigrant subpopulation is likely to
be more heterogeneous on many variables than the native subpopulation.
When subpopulation A is more heterogeneous than subpopulation B on
all variables in the analysis, then the extremes of each regressor will be
dominated by group A, which also has a greater variance on Y than group
B. This will produce butterfly heteroscedasticity. It can be shown that when
a population consists of two equal-size bivariate normal populations, and
TSX and TSY are twice as large in one subpopulation as in the other but the
simple regression coefficients relating Y to X are equal, TSE(b1) is 17% larger
than the value calculated from the regression formula ordinarily used to
calculate SE(b1). This does not sound like much, but if the actual standard
error is 17% larger than what your calculations show, then the probability
of finding a significant association between X and Y when there is no real
association is nearly twice as high as the α-level being used for the test.

A third situation that can produce heteroscedasticity occurs when Y is
measured with less random error for certain cases than others that differ
on the regressors. We discuss random measurement error in section 17.2.
Suffice it to say now that random measurement error tends to increase
a variable’s variance relative to what it would be if that variable were
measured without random error. If people who score higher (or lower) on
X have their Y measured with more error, heteroscedasticity is the result.

Heteroscedasticity can also result when modeling discrete count out-
comes using ordinary least squares regression. If your dependent variable
were something like the number of times a person donated to political can-
didates in the last year, Y would be dominated by zeros and 1s, a few 2s,
fewer 3s, and so forth. In a least squares linear model of a count Y such
as this, the conditional variance of Y is typically positively correlated with
its expected value. That means the variance of the errors in estimation will
tend to be larger for people who are estimated by the model to donate more
often.

Heteroscedasticity does not bias regression coefficients. Rather, het-
eroscedasticity exerts its influence on inference in regression analysis pri-
marily through its effects on the estimates of the standard errors of the
regression coefficients. Ordinary and butterfly heteroscedasticity tend to



502 Regression Analysis and Linear Models

result in estimates of standard errors that are too small. This produces
confidence intervals that are too narrow and hypothesis tests for regression
coefficients and TR that are invalid. Inverse butterfly heteroscedasticity
tends to result in estimates of standard errors that are too large. This pro-
duces confidence intervals that are too wide and hypothesis tests that are
lower in power than they otherwise would be if homoscedasticity were
met.

When a regressor is dichotomous, we can talk about the conditional
variance of Y in each of the two groups. Heteroscedasticity has its biggest
effect on the standard error for the regression coefficient for a dichotomous
regressor when the groups are different in size. When the smaller group is
more variable on Y, the standard error for the dichotomous regressor tends
to be underestimated, but when the smaller group is less variable on Y, the
standard error tends to be overestimated.

Given that the quality of our inferences in regression analysis are depen-
dent on the quality of our estimates of standard errors (since standard errors
determine confidence interval width and p-values), it is worth testing for
its existence so you can make an informed decision about how to proceed.
There are many tests of heteroscedasticity that have been described in the
regression analysis literature (e.g., Breusch & Pagan, 1979), and you may
be familiar with some from the ANOVA literature, such as Levene’s test.
These generally require some belief about the nature of the heteroscedas-
ticity (e.g., the variance in Y increases with X) or they make assumptions,
putting you in the awkward predicament of wondering whether the as-
sumptions of your test of assumptions are met.

Rather than describing these tests, of which there are several, we provide
a fairly simple method of testing for ordinary and butterfly heteroscedas-
ticity that can be conducted with any regression program that allows you
to generate and save t-residuals, as most do. The test relies on the fact that
under the standard assumptions of regression, E(tr2

i ), the variance of the
t-residuals, tri, is identical for all values on all regressors. So a significant
association between tr2

i and any regressor or set of regressors is evidence
for heteroscedasticity, and we can test for heteroscedasticity by testing the
independence of tr2

i from the regressors.
The form of this test we advocate requires normalizing tr2

i , which forces
its distribution to one approximately normal in form. This process involves
replacing the values of tr2

i with their rank position in the distribution, such
that the smallest squared t-residual gets a value of 1, the next smallest a
value of 2, and so forth, up to N. The rank order of ties can be determined
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arbitrarily, or they can each be assigned the mean rank for which they are
tied. Most statistical programs have a command for replacing scores with
their rank position in the distribution.

With these ranks derived, divide them all by N+1 and then replace these
with the value from the standard normal distribution that cuts off the lower
100× [rank/(N+1)]% of the normal distribution from the rest. These values
can be found with the help of Appendix C, or they can be derived by your
software. For example, if N = 19, then dividing the ranks 1 through 19 by
20 yields .05, .10, .15, and so forth, up to 0.95. From the standard normal dis-
tribution, these convert Z-scores of −1.645,−1.282,−1.036, . . . , 1.645. These
resulting normalized values or Z-scores are known as Van der Waerden
scores.

These Z-scores are roughly normally distributed, and under the as-
sumption of homoscedasticity they are independent of all the regressors.
So to test for ordinary heteroscedasticity, we regress these Z-scores on all the
regressors in the model and test the significance of the multiple correlation.
If R in this regression is statistically significant, then the homoscedasticity
assumption is violated. If you are particularly interested in certain regres-
sors, you would look at the t-statistic for those regression coefficients in
this regression with the Z scores as the dependent variable. A significant
regression coefficient implies partial heteroscedasticity.

This approach only tests for ordinary heteroscedasticity. You could
also test for butterfly or inverse butterfly heteroscedasticity by including
the squares of numerical regressors in this model at the same time. A
nonsignificant R would suggest no violation of the homoscedasticity as-
sumption, whereas a significant R could mean either ordinary, butterfly, or
inverse heteroscedasticity. But you could test collectively for any butter-
fly or inverse butterfly heteroscedasticity by testing all squared terms as a
set using the method described in section 5.3.3, or you could test for het-
eroscedasticity due to a specific variable by testing the significance of the
set defined as that variable’s unsquared and squared terms. If a variable’s
squared term is nonsignificant, you could drop it and reestimate the model,
examining the partial regression coefficient for that regressor as a test of
ordinary partial heteroscedasticity, while allowing for butterfly or inverse
butterfly heteroscedasticity involving other regressors that still have their
squared terms in the regression.

We illustrate by testing for heteroscedasticity in the self-censorship anal-
ysis from section 10.2.4. Recall in that example we estimated a person’s
willingness to self-censor from his or her age and shyness. Age was a mul-
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ticategorical variable with four ordinal age categories (Generation X, Gen-
eration Y, baby boomer, pre-baby boomer). In the code below we assume
that three indicator variables coding age cohort are already constructed and
held in variables d1, d2, and d3. The SPSS code below generates and nor-
malizes the squared t-residuals and regresses these normalized residuals
on age cohort, shyness, and the square of shyness.

regression/dep=wtsc/method=enter d1 d2 d3 shy/save sdresid.

compute trsq=sdr 1*sdr 1.

rank variables=trsq.

compute rtrsq=rtrsq/462.

compute z=idf.normal(rtrsq,0,1).

compute shysq=shy*shy.

regression/dep=z/method=enter d1 d2 d3 shy shysq.

In STATA, use

regress wtsc d1 d2 d3 shy

predict tr,rstudent

gen trsq=tr*tr

egen rtrsq=rank(trsq)

replace rtrsq=rtrsq/462

gen z=invnormal(rtrsq)

gen shysq=shy*shy

regress z d1 d2 d3 shy shysq

The SAS code below does the same analysis, assuming that the data file
containing the regressors and the t-residuals are in a file named “ch16diag.”
SAS has a special procedure built into PROC RANK for generating Van der
Waerden scores, which the code below utilizes.

data ch16diag;set ch16diag;trsq=t*t;shysq=shy*shy;run;

proc rank data=ch16diag normal=vw ties=mean out=ch16diag;

var trsq;run;

proc reg data=ch16diag;

model trsq=d1 d2 d3 shy shysq;run;

From this analysis, R = 0.135, F(5, 455) = 1.695, p = .134, meaning we fail
to reject the assumption of homoscedasticity. But this omnibus test doesn’t
preclude the possibility of partial heteroscedasticity. The regression coef-
ficient for the square of shyness was not statistically significant, meaning
no butterfly heteroscedasticity involving shyness. When the squared term
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was removed and the model reestimated, none of the regression coefficients
were statistically significant, nor was R,F(4, 456) = 2.104, p = .079. We also
looked for evidence of partial heteroscedasticity involving age by adding
the three indicator variables coding age to the model that already contained
shyness (only the linear term). The increase in R was not statistically sig-
nificant, F(3, 456) = 1.744, p = .157. Combined, these analyses support the
conclusion that the homoscedasticity assumption is met.

In the next section we describe a test on the whole set of standard as-
sumptions that can be performed by applying a Bonferroni correction to
the p-value of the highest t-residual. But that test is not nearly as power-
ful at detecting heteroscedasticity as the test we just described. In 1,000
bivariate samples of size 50 from artificial populations with butterfly het-
eroscedasticity, the test we describe next failed to discover the problem
in 371 samples, while the test described in this section failed in only six
samples.

16.2.4 Testing Assumptions as a Set

In the prior pages we described some methods for examining the plausibil-
ity of the assumptions of linear regression analysis. We can conduct a more
general test of the null hypothesis that none of the assumptions is violated
against the alternative that at least one is violated. Perhaps the simplest
method for detecting a violation of this set of assumptions relies on the
distribution of t-residuals. As discussed in section 16.1.3, these follow an
exact t-distribution under the standard assumptions of regression. Using
the t(dfresidual) distribution, one can derive a two-tailed p-value for tri.

The p-value for each t-residual is sometimes misinterpreted as testing
the null hypothesis that case i falls on the true regression line. If that were
so, then the proportion of significant t-residuals would approach 1 as N
increases since almost no cases in fact fall exactly on the true regression
line. But if the standard assumptions hold, we expect only 5% of the t-
residuals to be significant at the .05 level, no matter how large the sample.
The hypothesis tested using the p-value for each t-residual is actually that
Yi falls within a normal distribution of scores around the regression line.
But because the number of residuals is N, a Bonferroni correction should
be applied to the p-value for each tri to compensate for the fact that we are
doing N hypothesis tests in search of something statistically significant. So
the largest t-residual in absolute value is considered statistically significant
only if its significance level is below some chosen α-level, such as 0.05,
even after being multiplied by N. A statistically significant residual after
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this Bonferroni correction suggests that at least one of the assumptions of
regression is violated without specifying which one.

Most statistical packages have a command for generating the p-value for
a t-statistic, so this test is fairly easy to implement once you have generated
the t-residuals as discussed in section 16.1.5. Section 11.2.5 provides SPSS,
SAS, and STATA code for generating p from t. This test is implemented in
the RLM macro described in Appendix A. It provides output containing
the largest t-residual and its Bonferroni-corrected p-value.

Another test of the standard assumptions of regression does not rely so
heavily on individual t-residuals and may be considerably more powerful
for detecting any violation that affects many residuals somewhat without
affecting any single residual too greatly. In this test we pick some arbitrary
probability, count the number of t-residuals that are statistically significant
at this level (without a Bonferroni correction), and use the binomial distri-
bution to test whether this number is greater than would be expected by
chance. For instance, in a sample of 50 cases, by chance we would expect
five t-residuals to be statistically significant with a p-value of no greater
than .10. If we observe 11 such residuals, the binomial distribution tells
us that that the probability of observing so many is only .0094; this indi-
cates that at least one of the standard assumptions must be violated. The
binomial test is not perfectly accurate for this use, for it assumes that the N
residuals are statistically independent, and they are not quite independent.
But in tests we have run, the error is small.

16.2.5 What about Nonindependence?

We have not yet addressed the assumption of independence. The assump-
tion of independence pertains to the size of the errors in estimation—that
there is no relationship between the error in the estimation of Y for case i
and the error in estimation of Y for case j. This assumption can be harder
to test than other assumptions and is probably routinely violated. Nonin-
dependence can creep into a study in all kinds of ways if you aren’t careful
about your sampling, study design, and data collection procedure.

Nonindependence can have various effects on statistics from a regres-
sion analysis, but its effect on standard errors is one of the bigger concerns.
Research shows that violation of the independence assumption can result
in standard errors for regression coefficients that are too large or too small,
but in most circumstances the result will be underestimation. As a result,
confidence intervals will be too narrow and p-values inappropriately small
when this assumption is violated.
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To understand why, consider two studies identical in purpose but differ-
ent in method. Suppose you are interested in comparing men and women
in their attitudes toward a controversial social topic, such as gun control.
You decide to ask 200 people their attitudes by randomly visiting houses
in a city and asking the opinions of everyone at home at the time you visit.
Because some houses have more than one person in the home, you won’t
need to visit 200 houses, but this doesn’t change the fact that you will still
end up talking to 200 people. Once you have talked to 200 people, you can
then conduct a test comparing the attitudes of the men and women you
ask.

Now consider a variation on this method, where you actually visit 200
houses because you decided to talk to only one of the people living at
each house you visit. This may take more time than the variation of this
study just described, but at the end you’ll have 200 responses, and you can
compare the responses of men and women, just as in the prior version.

In both variants of this study, N = 200. But the latter study contains
more information about how men and women differ, because the responses
of the men and women are more likely to be independent, with the caveat
we describe later. Its effective sample size is 200 or nearly so, but the former
study’s effective sample size would be much smaller than 200. In the former
study, people living together are likely to have similar attitudes, because we
know that people influence each other, they selectively sort themselves into
social groups based on similarity in beliefs, and they are more likely to be
attracted to and partner with people who are like themselves. So if you were
to regress a person’s attitude about gun control on an indicator variable
coding sex in order to test for sex differences, the errors in estimation
of Y are not likely to be independent between people living in the same
house. But this is not a problem in the second version of the study, because
you have data from only one person in each house. The consequence is
that we would expect the standard error for sex to be smaller in the first
version of the study, because it is treating the 200 people as if they are
providing independent information about variability between people in
their attitudes. Although 200 people were asked about their attitudes, we
don’t have 200 independent measurements of those attitudes.

The problem with the analysis from the first version of the study is not
easily fixed after the fact without relying on more complicated regression
methods. Although you could include a set of indicator variables to code
the house a person lives in, this would consume many degrees of freedom
and could drastically lower the power of hypothesis tests.
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Earlier we said that the version of the study based on only a single per-
son interviewed at a selected house is more likely to produce independent
responses than if everyone at the house were interviewed. This is true,
but even then, nonindependence may exist. For instance, people living
on the same street may know each other, talk to each other, and influence
each other’s attitudes. So two people living on the same street may give
nonindependent responses even if they don’t live in the same house. Or
maybe people who are politically liberal are more likely to live on Equality
Street, whereas politically conservative people are more likely to live on
Liberty Street. Even if no one talks to his or her neighbors, the errors in
estimation of a person’s response may be related to errors in estimation for
people living on the same street.

Or suppose you were to randomly call 500 people living throughout the
United States to provide data on some variable of interest. This is common
in survey research and public opinion polling. Such a sampling plan might
seem like the epitome of a method that would satisfy the independence
assumption. But people living in the same state or city might be more
similar to each other on the variable you are measuring than people living
in different states. Technically, this is a violation of independence, although
researchers rarely do or even think much about it. And it is common in
experimental research to collect data from people in groups. For instance,
perhaps you are presenting stimuli to people on a computer screen, and to
save time, you recruit five people at a time and sit them in front of different
computers in the same room to collect data from them at the same time.
But are their responses likely to be independent? Perhaps, but suppose that
the dependent variable is affected by the temperature of the room. If the
temperature of the room fluctuates from day to day or even hour to hour,
this can produce nonindependence in the errors of estimation of Y between
subsets of people in the room at the same time their data were collected.
Obviously, if these people are allowed to interact during the study, this
can also produce nonindependence, especially if they talk about the study
itself, their responses to the questions, and so forth, as the data are being
collected.

Although you may not be able to completely avoid or eliminate non-
independence, you can at least be conscious of its possible existence and
try to reduce it through choices made about sampling and study design.
After the fact, it is hard to eliminate unless you have a good idea of where
it comes from. Of course, some methods you are already familiar with
are designed with nonindependence in mind. An example is the paired-
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samples t-test, which is designed for comparing the means of Y among
people who are “matched” and hence nonindependent. There are some
tests of independence that can be used for certain types of sampling and
research designs, and there are special analytical methods that are well
suited to modeling data that are likely to be nonindependent in some way,
such as multilevel modeling. For a discussion of some of these methods and
nonindependence more generally, as well as ways of quantifying nonin-
dependence, see Griffin and Gonzales (1995), Grawitch and Munz (2004),
Kenny and Judd (1986), Kenny, Mannetti, Pierro, Livi, and Kashy (2002),
Luke (2004), O’Connor (2004), and Raudenbush and Bryk (2002).

16.3 Dealing with Irregularities

Neither heteroscedasticity nor non-normality affects the expected values of
b0, bj, and MSresidual, so these statistics provide unbiased estimates of Tb0,
Tbj, and TVar(Y.X) even in the presence of these conditions. But hypothesis
tests and confidence intervals can be invalidated by violations of any of
the standard assumptions. Thus, you typically should do something about
cases suggesting violations of the standard assumptions.

But what do you do? There are many exceptions, but generally your
four options are correction, transformation, elimination, and robustifica-
tion. They are normally considered in that order. Correction refers simply
to the correction of clerical errors. Transformation means applying a log-
arithmic or other transformation to a variable—either a regressor or the
dependent variable—so that the case is no longer so extreme. Elimination
means eliminating the case from the sample. Robustification means replac-
ing the regression analysis by an alternate method less sensitive to extreme
cases. Correction of clerical errors needs no discussion here, and transfor-
mations were discussed in Chapter 12. In the rest of this section, we discuss
elimination and robustification.

When you eliminate a case simply because it is extreme in some sense,
you are essentially adding a major qualification to your conclusions. You
are admitting that the conclusions apply only to the subpopulation defined
as the population of cases that exclude extreme cases like the one or ones
you eliminated. At least four questions are left unanswered: (1) how the
studied subpopulation differs from the rest of the population, (2) how large
the included and excluded subpopulations are, (3) how the independent
variables relate to the dependent variable in the excluded subpopulation,
and (4) whether these relationships in the excluded subpopulation might
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be so large as to make the relationships in the studied subpopulation ir-
relevant. Nevertheless, an extreme score may be the major available clue
that a participant in a study did not understand the directions he or she
was given in a survey or experiment, or that the experimental manipula-
tion was done improperly for that one participant, or may in other ways
provide a defensible reason for discarding the participant’s data. Thus,
elimination may be a reasonable choice. This is especially true if post hoc
examination of the case reveals something odd about it—for instance, ev-
idence that a person did not understand experimental directions. But for
the reasons mentioned, elimination may sometimes be a reasonable choice
even without such evidence.

There are two general types of robust approach. One set of approaches
uses alternative methods for estimating the regression coefficients. The
other uses ordinary formulas for the regression coefficients but some alter-
native method for calculating significance levels or estimates of standard
errors. The former approaches essentially give less weight to outliers. This
raises fundamental questions about the purpose of the regression. After
all, down-weighting an outlier can lead to a regression solution that fails
to represent adequately the fact that such outliers do occasionally occur.
So we shall consider only the second approach, in which the investigator
uses ordinary regression formulas to derive the best-fitting model, but em-
ploys an alternative method to find standard errors, confidence intervals,
or p-values.

We consider four methods: heteroscedasticity-consistent standard er-
rors, the jackknife, bootstrapping, and permutation tests. All of these
are practical only with computers, but with the right software they take
anywhere from a few seconds to a few minutes on an ordinary personal
computer. None of these are panaceas for problems produced by various
irregularities such as assumption violations. Even these methods are non-
robust in certain circumstances too numerous and complicated to outline
here. Each has variants we do not describe to deal with some of the weak-
nesses of other variants. The point of our discussion below is to outline a
bit about how these methods work, not to describe all the forms they take
or offer recommendations as to the specific circumstances in which you
might choose to use them. Each of these methods has been heavily studied.
General overviews can be found in Edgington (1995), Efron and Tibshirani
(1993), Good (2001), Lunneborg (2000), and Rodgers (1999).
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16.3.1 Heteroscedasticity-Consistent Standard Errors

The formula for the standard error of a regression coefficient in section
4.4.3 that is implemented in most regression analysis programs assumes
homogeneity in the variance of the errors in estimation. This assumption
justifies the use of MSresidual in the numerator of the formula as an estimate
of the conditional variance of Y, which is assumed to be equal for all
combinations of regressors.

There is a family of heteroscedasticity-consistent (HC) standard error es-
timators for the regression coefficients that do not require this assumption.
They are known as sandwich estimators in the statistics literature, because
their formulas in matrix algebra look like a sandwich, with the matrix of val-
ues on the regressors as the “bread” and the residuals, usually squared and
possibly weighted in some fashion by each case’s leverage, serving as the
“meat.” They are called HC estimators, because unlike the usual OLS stan-
dard error estimator, which is biased and does not converge with increased
sample size to the proper value when the homoscedasticity-assumption
is violated, the HC estimators approach the correct value with increasing
sample size even in the presence of heteroscedasticity. In statistics, the
converging of an estimator to its correct value with increasing sample size
is a property called consistency.

Use of one of these standard errors does not require modifying the
mathematics to estimate the regression coefficients. Rather, the usual stan-
dard error estimator is simply replaced with a HC standard error estimator.
There are many forms HC estimators take, the earliest frequently attributed
to White (1980) and often called the White or Huber–White estimator and
denoted HC0. This early version has been improved into forms labeled
HC1, HC2, HC3, and HC4. They defy nonmathematical description. We
offer the formula for HC3 in matrix algebra form in Appendix D. Other-
wise, see Cribaro-Neto (2004), Hayes and Cai (2007), and Long and Ervin
(2000) for details about their computation and examples of application.

When heteroscedasticity is a concern, one of these estimators can pro-
vide more solid footing. But Long and Ervin (2000) make a case for the
regular use of one of these standard errors even when the homoscedasticity
assumption is met. This is because they tend to perform better when the ho-
moscedasticity assumption is violated, regardless of the form heteroscedas-
ticity takes, than the standard error estimator that assumes homoscedastic-
ity. Research shows HC3 and HC4 tend to work best. Importantly, these
standard error estimators work well even when the homoscedasticity as-
sumption is reasonable. Given that these estimators are easy to compute
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and are even available in some software packages (all these HC estimators
are available in the RLM macro for SPSS and SAS described in Appendix A;
STATA and SAS offer several of them as well), perhaps one day researchers
will rid themselves of the homoscedasticity assumption and use one of
these estimators for inference in regression analysis as a matter of routine.

16.3.2 The Jackknife

The jackknife, or jackknifing, was given its name by J. W. Tukey on the
grounds that it may not be the very best tool for anything at all, but it’s a
serviceable tool in a great many situations. To jackknife a statistic or a test,
divide the sample into g groups of equal size, where g is at least 10. In fact,
in practice g is frequently set to N, so each “group” contains only one case.
Then compute the statistic of interest after deleting group 1 from the sample;
then add group 1 back in, delete group 2, recompute the statistic; then add
group 2 back in, delete group 3, recompute the statistic; and continue in
this manner through all g groups. At the end of this process, you will have
g estimates of the statistic of interest. The standard deviation of these g
estimates can be used to compute the standard error of the original statistic.
Inference can then proceed in the usual way, by constructing a confidence
interval using this jackknife estimate of the standard error. Or you could
divide the observed statistic by this standard error and generate a p-value
for testing the null hypothesis that the corresponding parameter equals
zero using the normal distribution.

16.3.3 Bootstrapping

Like the jackknife method, the bootstrap method has been suggested for
inference for virtually any statistic. It is based on a simple idea documented
in Efron and Tibshirani (1993). If we make absolutely no assumptions about
the nature of the population distributions of the variables measured, then
the distribution of the measurements in the sample is in every respect the
best estimate of the population distribution. That is, if our sample size is
50, then our best assumption-free estimate of the population distribution
of the variables measured is that 1/50th of the cases are exactly like case
1, another 1/50th are exactly like case 2, and so on. We then draw, say, B
independent random “bootstrap samples” of size 50 from this imaginary
population, where B is some large number. This sampling of the original
data is done with replacement, so that the bootstrap sample data set does
not just reproduce the original data. We then compute the statistic(s) of
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interest in each of these bootstrap samples, giving us B estimates of the
corresponding parameter.

In one version of the bootstrap method, we then calculate the standard
deviation of all B values of each statistic and use that as the estimated stan-
dard error of that statistic. As with the jackknife, the normal distribution
is then ordinarily used to test hypotheses about the statistic or to find a
confidence interval. B does not need to be particularly large when using
bootstrapping in this way. Usually 100 or 200 bootstrap samples will do.

In the other version of the bootstrap we never compute a standard
error but base our inferences on the number of bootstrap samples yielding
statistics in various ranges. This requires a larger value of B—at least 1,000,
but more is better. For example, if bj is positive in the original sample, the
proportion of the bootstrap estimates of bj that yield negative values of bj

can serve as the significance level for testing the null hypothesis Tbj > 0.
Alternatively, a confidence interval for Tbj can be constructed by using the
percentiles of the distribution of B values of bj. For instance, for a 95%
confidence interval, the lower and upper endpoints are defined as the 2.5th
and 97.5th percentiles of the distribution of B bootstrap estimates of bj.

16.3.4 Permutation Tests

Consider a simple correlation rXY based on a sample of size N. Suppose
we were to take the N measurements of Y and randomly match them with
the N values of X and then recompute rXY. Imagine doing this 999 times,
so we have 1,000 values of rXY including the original one. Suppose we find
that the original correlation is the 28th-highest of all 1,000 values. We can
then say that if these X scores had been matched randomly with these Ys,
the probability is only 28/1,000, or .028, that the original correlation rXY

would have ranked so high. This value .028 is the one-tailed significance
level p for the obtained correlation; it is a permutation or randomization test
of random association. If we ignored the sign of rXY both in the original
data and in all 999 recomputed correlations, then a two tailed p-value is the
proportion of the absolute values of the 1,000 correlations that are at least
as large as the original absolute correlation.

In this example we held constant the order of measurements on X and
randomly reassigned values of Y to those X values. In multiple regression
we can hold constant the entire matrix of regressor scores, rescramble the
order of the Ys many times, and recompute R and all values of bj each
time for construction of p-values using the same approach as in the simpler
example.
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Rescrambling the Ys themselves is actually not as powerful as an alter-
native method. To see why, suppose b1 is high positive, and one person has
extremely high measurements on X1 and Y, but this person’s measurement
on Y is about what we would predict from his or her high measurement
on X1. This high Y will increase the variation across all the rescramblings
of every bj. This is as it should be for b1, but it will also be true for ev-
ery other bj tested. So in testing the unique contribution of any regressor
Xj, the most powerful procedure will generally be to use the portion of Y
independent of all regressors except Xj. This means we should use a dif-
ferent column of residuals for each Xj, and still another column for testing
R. Thus, we should altogether use (k + 1) different columns of Y-residuals
when constructing permutation tests for partial regression coefficients.

16.4 Inference without Random Sampling

In section 6.1.3 we mentioned briefly that valid statistical inferences may be
drawn without random sampling, and even without either random sam-
pling or random assignment. In an example presented there, we pondered
a statistical test about the change from one decade to another in the pro-
portion of female professors hired by a particular college. Or suppose a
club of 50 local businesspeople contains 30 retailers and 20 others. If 25
of the retailers but only 10 of the others vote to change the bylaws, it is
valid to perform a 2 × 2 test of independence in a cross-tabulation to test
for a nonchance association between vote and type of business. But, again,
there is no hint of either random assignment or random sampling from a
broader population. When used in this way, tests of association test the
null hypothesis of random association—the hypothesis that the association
observed between two variables is caused solely by chance.

Both these examples could be instances of nonsampling, because there is
no sampling at all. In the first example, we might study every professor ever
hired by the college, or in the second example, the entire membership of the
business club. But it is often difficult to distinguish between nonsampling
and nonrandom sampling. For instance, in the second example we might
think of the local club as a nonrandom sample of the population of members
of other business groups in that city or in the nation. The distinction
between nonsampling and nonrandom sampling is unnecessary, as well
as ambiguous since the types of conclusions we can draw are much the
same under both conditions. So the important distinction we must make is
between the presence and absence of random sampling.
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Nonrandom sampling and nonsampling are very common in both large-
scale and small-scale research. On a small scale, suppose an experimenter
posts an ad asking for volunteers to serve as participants in an experiment,
and uses the first 20 people who sign up. Those participants are not a
random sample from any broader population. But if the experimenter
assigns the 20 subjects randomly to conditions, then the experiment has
random assignment without random sampling. On a larger scale, many
behavioral scientists study the entire population of interest: Analysts at the
Educational Testing Service have data from all students who take College
Board tests, workers at the American Association of Medical Colleges have
data on every applicant to an American medical school, census analysts
have data from virtually the entire U.S. population, and so on.

Frick (1998) and Mook (1987) discuss how it is inappropriate to put
random sampling on a pedestal, thereby condemning all studies that fail
to include it inferior in some way. But others have argued that studies
that don’t include a random sampling component are “pseudoscientific”
(Potter, Cooper, & Dupagne, 1993). We agree with the former perspective.
Random sampling certainly has a role to play in the kind of inferences
we can make. But as Frick (1998) notes, we should distinguish between
inferences about process and inferences about populations. Most researchers
care about process inference: what is the process that generates the data
and the obtained result? They often care less or not at all about population
inference: does the result obtained reflect what would have been found if the
entire population could have been included in the study? Of course, some
people care very much about population inference. Public opinion pollsters
who generate poll results you read about in the news are an example. Their
business is founded on the importance of solid population inference. But
most researchers have different research goals than the typical pollster has.

When a significant association between two variables is found under
random sampling, it establishes both the replicability and meaningfulness of
the association. We say an association is meaningful if valid hypothesis
tests indicate that chance may be excluded from a list of the possible causes
of the association. We say the association is replicable if we can have
a certain confidence that a nonzero association will be observed again
under specifiable conditions, such as drawing a large second sample from
the same population. Finding a statistically significant association under
nonrandom sampling establishes the association as meaningful, though not
necessarily replicable. This at least allows us to speculate on the causes of
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the association, as in the previous examples concerning the college’s hiring
practices or the business club.

When there is random assignment without random sampling, as in the
example involving the signup sheet, we can go beyond such speculation.
Then the existence of a causal relation can be demonstrated, though its
generality or replicability is still unknown. In particular, if scores of a
treatment group are significantly above those of a control group, then you
have shown that the treatment increases at least some scores. This can be
a finding of some interest if the dependent variable is a trait thought to be
wholly beyond control, such as baldness—or if the independent variable is
thought to be imperceptible, such as infrared light or messages flashed on
a screen too fast to be seen consciously.

Conclusions of this sort can sometimes be generalized to a broader
population, even without random sampling. This is possible if it is assumed
that causation is unidirectional, meaning that exposure to the treatment
condition rather than the control does not lower anyone’s score on the
dependent variable. Then, even without random sampling, we have shown
that the treatment increases the population mean merely by demonstrating
that it raises at least some scores in the population but doesn’t lower any
scores.

16.5 Keeping the Diagnostic Analysis Manageable

At the level we have now reached in regression analysis, it may be clear
that statistical analysis is as much art as science, and not a set of mechanical
do and do-not rules. But some general suggestions on the conduct of
diagnostic analysis should be helpful.

We saw in Chapters 12, 13, and 14 that curvilinearity and interaction can
distort analyses that ignore them, and the same is true of the various kinds
of irregularities considered in this chapter. Thus, all these chapters concern
potential complications. When should you check for them? You cannot do
everything at once. There is no “right” order of checking for these com-
plications, any more than there is a right order of checking for problems
when you buy a used car. But there are three reasons for normally apply-
ing diagnostic methods before checking for unanticipated curvilinearity or
interaction. First, diagnostic methods can uncover clerical errors, and such
errors clearly should be detected as early as possible. Second, at least the
basic diagnostic methods are easier, and it is always sensible to do easier
things first. Third, experience suggests that diagnostic methods uncover
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complications more often than do tests for curvilinearity and interaction,
and you want to find any problems as soon as possible.

A diagnostic analysis always concerns a particular regression, so the
first step in a diagnostic analysis is to identify the regression analysis you
would conduct if there were no irregularities. The diagnostic analysis
should focus on that regression.

The next step is to choose particular diagnostic methods and tests. We
have described measures or tests for many types of irregularities involv-
ing leverage, distance, influence, partial influence, and several kinds of
heteroscedasticity. And examination of partial influence and partial het-
eroscedasticity can be done for each regressor. Thus, the number of possible
analyses may be large. You should not try to use every one of these tools
in every possible analysis. Rather, you should focus on the three major
goals of the diagnostic analysis: to check for clerical errors, to examine
previously suspect cases, and to test the standard assumptions of regres-
sion. To check for clerical errors, check the cases with the highest scores on
overall leverage, distance, and influence. Previously suspect cases should
be checked primarily for excessive influence—either total or in part—for
the most important regressors.

To test the standard assumptions of regression, nearly every analysis
should include the Bonferroni-corrected test on the highest t-residual. In
addition, tests for ordinary and butterfly heteroscedasticity described in
section 16.2.3 should be routinely conducted. The exception might be if
you choose to use a heteroscedasticity-consistent standard error estimator
for inference, but even then, it isn’t a bad idea to test for heteroscedasticity,
because its detection could reveal things about the model that could be
modified, such as including a missing interaction. And if the major focus
of the analysis is on a single regression coefficient bj, then pay special
attention to things that might affect the quality of the estimate of bj or
inference about Tbj. For any of these tests, absence of significance does not
prove the assumptions hold, but at least violations of the assumptions have
been given a chance to show themselves.

16.6 Chapter Summary

Regression diagnostics are used to detect unusual or irregular cases in
a data set and to test the assumptions of regression. Before taking any
regression analysis at face value, it is important to examine the data for
any irregularities, such as impossibly large or small values of regressors
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or the dependent variable or strange combinations of regressor values.
Often these represent clerical errors or other data collection problems, and
they should be fixed. But unusual cases may be hard to detect by merely
eyeballing the data in search of something strange. Diagnostic statistics that
measure leverage—the atypicality of a pattern of regressor values—can be
helpful in this task.

If a case’s value of Y is very far from Ŷ—the case’s distance—this may
represent a violation of one or more of the assumptions of regression anal-
ysis. The residuals, after a transformation, can be used to test whether the
assumptions of normality or heteroscedasticity have been violated using
one or more of the methods discussed in this chapter. Often, an assump-
tion violation will have no deleterious effects on the quality of the resulting
inference and conclusions reached, but you can never be sure, so it is worth
looking for assumption violations so you can make an informed decision
on what to do about it.

A case can also be highly influential, meaning that its presence in the
analysis is having a large effect on the regression results. Measures of
influence introduced in this chapter quantify the amount that the inclusion
of a case affects the estimates of Y for all cases in data, as well as how
a case changes the regression coefficients when it is included relative to
when it is excluded from the analysis. These influence measures should be
examined and appropriate action taken if a case appears to be distorting
a regression analysis, especially if its inclusion seems to work in favor of
a hypothesis you are advocating or claim is supported in the data. The
decision to include or exclude a case from an analysis should not be taken
lightly and needs to be justified. Most important is that you are open with
consumers of your research about what you have done.

Assumption violations can affect the validity of the inferences reached
with regression analysis or lower the power of hypothesis tests. It is worth
examining how robust one’s regression analysis is to assumption violations
by employing an alternative method, such as bootstrapping or the use
of heterscedasticity-consistent standard errors, to see if your conclusions
change using one of these alternative methods. This should certainly be
done when you have evidence that one or more of the assumptions has
been violated, but even if you don’t, evidence that an alternative method of
inference does not change one’s findings can be comforting to both yourself
and consumers of your research.
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