
12
Nonlinear Relationships

Assuming linearity between two variables when modeling their relation-
ship often results in reasonably good models that are useful and easy
to interpret. But sometimes we have reason to believe a relationship
is not linear, or the evidence compels us to accept that it is not. In
spite of its name, linear regression analysis can be used to model rela-
tionships that are better described with curves than with straight lines.
In this chapter we discuss reasons you might choose to fit a curve to
a relationship rather than a straight line, and we show how to detect
nonlinearity visually as well as using polynomial regression. We also
give a brief overview of spline regression, an interesting extension of
regression analysis that allows for chaining of line or curve segments
to capture complex forms of nonlinearity. We end with a discussion of
transformations, often used to make nonlinear relationships approximate
linear ones.

12.1 Linear Regression Can Model Nonlinear
Relationships

Relationships between variables are sometimes better described with
curves than with straight lines. A graph showing world population on
the vertical axis against time on the horizontal axis would constantly curve
upward, with the growth accelerating rapidly with time. Human height
against age rises more slowly during childhood than in the early teen years
but levels off later. A plot of “commitment to democracy” versus the extent
to which a person identifies as politically conservative versus politically
liberal might show greater commitment among those in the middle of the
ideology continuum than among those on either the liberal or the con-
servative end of the spectrum. Desire to acquire more money might be
especially high among people who have very little, slowly drop off as in-
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342 Regression Analysis and Linear Models

come increases, and perhaps climb again among people who are already
very wealthy.

It may come as a surprise that a statistical technique called linear re-
gression analysis can be used to fit curves. It can. In this chapter, we show
some of the ways this is done.

12.1.1 When Must Curves Be Fitted?

In a scatterplot of Y against X, sometimes you can see that a curve better
describes a relationship than does a straight line. It may be that you could
easily draw a curve freehand through the scatterplot that seems to fit better
than any straight line that a regression program would generate. But there
are times when you need to go beyond this informal means of representing
curvilinearity. These include

• When you must estimate Y from X.

• When you want to test whether the relationship is curvilinear against
the null hypothesis that it is linear.

• When you must estimate the value of X at which Y is maximized
or minimized, such as the amplification volume at which a person’s
speech is perceived clearest, or the length of rest breaks that maxi-
mizes productivity.

• When you must correct for a nonlinear relationship between Y and a
covariate when studying the relationship between Y and independent
variable X.

Consider the data represented by the scatterplot in Figure 12.1. It is obvi-
ous that no straight line adequately characterizes the relationship between
X and Y. The best-fitting regression line of the form Y = b0+b1X is superim-
posed on the scatterplot. The equation for this line is Ŷ = 3.289 − 0.220X.
It is the best-fitting line by the least squares criterion. In this example,
R = 0.591, SSresidual = 6.003, and we know that no equation of this form
would result in a smaller SSresidual or larger R.

But consider a quadratic equation of the form Y = b0 + b1X + b2X2. This
is the equation for a parabola. The equation Ŷ = 1.254 + 1.597X − 0.359X2

is superimposed on Figure 12.1, which is the best-fitting parabola for these
data. Just looking at the plot, it obviously fits much better than the linear
model. Statistics confirm the better fit, as R = 0.905 and SSresidual = 1.666 for
this equation, which was found simply by regressing Y on X and X2. R is
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FIGURE 12.1. The best-fitting linear and quadratic model for these data.

much larger and SSresidual is much smaller for the quadratic model than the
linear model. So we have produced a better-fitting equation relating Y to X
by adding the regressor X2 to the model. Thus, linear regression analysis
can be used to fit parabolas to data. Indeed, it can be used to fit other kinds
of functions to data that are curves or semblances of curves.

This example illustrates each of the four points above. If your goal
was to generate an estimate or prediction of Y from X, clearly you would
do better using the model with X2 than you would the model without
it. You could also statistically compare the fit of the linear model to the
nonlinear model to formally test whether the relationship is better described
as curvilinear rather than linear. This would be the same as testing the
null hypothesis that the regression coefficient for X2 is equal to zero. Using
calculus, you can derive that the estimated peak in Y occurs when X = 2.224;
for those with a calculus background, the first derivative of the equation
for Ŷ with respect to X is 1.597 − 2 × 0.359X, which is equal to zero when
X = 2.224. And suppose that X was a covariate. The procedures we
described in Chapter 3 and elsewhere could result in improper control of X
if you assumed that the relationship between Y and X was linear. But using
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X2 along with X as regressors in the model along with your independent
variable of interest may reduce or eliminate this problem.

This latter point is worth developing further. Let the covariate be la-
beled C, and let X and Y be independent and dependent variables, respec-
tively. Imagine that C has a mean near zero (either naturally or because
you have made it so), meaning that C and C2 are uncorrelated or nearly
uncorrelated (we develop this point in section 12.2.4). Now suppose that
Y is determined entirely by C2 as Y = C2. And further suppose that C also
entirely determines X in the same way: X = C2. Thus, Y = X, and both
correlate zero or nearly so with C. If you failed to control for the curvilin-
ear effect of C on Y, you would mistakenly conclude that X determines Y
completely, when it actually has no effect at all, because Y is determined
entirely by C.

The distortion in the apparent effect of X on Y occurs in this example
because the relationship between X and C mirrors that between Y and C.
But even in the absence of this, failure to control for curvilinear effects
of covariates can distort results in the opposite direction by increasing
MSresidual, which makes it harder to identify effects of X on Y that actually
do exist, because all other things being equal, standard errors for regression
coefficients are larger when MSresidual is larger (recall equation 4.3).

12.1.2 The Graphical Display of Curvilinearity

When there are no covariates to complicate matters, a simple scatterplot
depicting the relationship between two variables can be very useful both
for seeing that a relationship is curvilinear and for discerning the nature
of the curvilinearity. To take a few examples from the Roman alphabet, a
scatterplot depicting nonlinearity between X and Y, with Y on the vertical
axis and X on the horizonal axis, may look something like an L, with a
sharp, rapid drop in Y as X increases, but a flattening of Y as X increases
further. Or it could look like a U, with Y higher on the extremes of X than
in the moderate values of X. The inverse of this would be a lowercase n,
with Y lower in the extremes of X but higher in the middle of X. A J-shaped
relationship would appear with Y relatively flat with increases in X with
a sharp spike upward in Y once X reaches a certain value. Other forms of
nonlinearity that are possible may not look like letters from the alphabet.

However, it is more difficult than you might think to depict or discern
a nonlinear relationship between X and Y when there are covariates. If
we have an independent variable X, a dependent variable Y, and one or
more covariates C, and if there is a curvilinear relation between X and Y
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FIGURE 12.2. Eight possible scatterplots of Y against X with a covariate C. Plot G is the
residual scatterplot.
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when covariates are controlled, then there are no fewer than eight different
scatterplots that we might think would display this curvilinearity. This
is because there are four “forms” of Y we might consider: Y itself, the
portion of Y independent of X (Y.X), the portion of Y independent of C
(Y.C), and the portion of Y independent of X and C (Y.XC). In Chapter 3 we
discussed that these portions of Y are residuals from a regression (e.g., Y.C
is the residual from a regression estimating Y from C). There are also two
forms of X we might consider: X itself, and the portion of X independent
of C (X.C). By combining the four forms of Y with the two forms of X,
we can generate eight different scatterplots that we might imagine would
display any curvilinearity between X and Y. And indeed any of these eight
will work if X is independent of C and neither X nor C has any linear
effect on Y. But abandoning any one of these three conditions can make
the curvilinearity invisible, or nearly so, in four of these eight scatterplots,
abandoning a second condition makes it invisible, or nearly so, in two
more, and abandoning a third makes it invisible, or nearly so, in one more.
The only scatterplot that is impervious to violations of all three conditions
is the residual scatterplot, which is the plot of Y.XC against X.

This point is illustrated in Figure 12.2, which shows these eight scat-
terplots for a sample with two regressors. This artificial data set is fairly
typical, except that Y was defined as an exact nonlinear function of X and
C to make any nonlinearity as visible as possible. The exact definition of
Y used was Y = 5X + 1X2 + 10C, meaning X is nonlinearity related to Y
when C is controlled. Curvilinearity is clearly visible only in the residual
scatterplot, which is plot G in the lower left corner (Y.XC against X). The
semipartial scatterplot (Y against X.C) described in section 3.3.1 is plot B,
and the partial scatterplot (Y.C against X.C) described in section 3.3.2 is
plot F. They can hide even substantial nonlinearity. Curvilinearity is barely
visible in plots C (Y.X against X) and H (Y.XC against X.C) but is crystal
clear in the residual scatterplot.

Residual scatterplots provide the best graphical method for detecting
nonlinearity and discovering its nature, but they have a major limitation
that creates the need for nongraphical methods. One limitation of any
graphical approach is the inefficiency of the human eye in detecting non-
linearity. This is illustrated in Figure 12.3. If you didn’t know otherwise,
you would probably think that the relationship between X and Y depicted
there is linear. Yet in these data, nonlinearity is statistically significant at
the .01 level and can easily be detected by polynomial regression intro-
duced in section 12.2, even though that nonlinearity is essentially invisible
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FIGURE 12.3. Real nonlinearity is sometimes hard to see in a scatterplot.

to the eye. This can be particularly problematic when there are nonlinear
relations among regressors. In that situation, nonlinearity between one
regressor and Y may be totally invisible even in a residual scatterplot.

An alternative problem is the tendency for the human mind to see
patterns among even a random dispersion of dots. That is, you might
think you see nonlinearity, but that nonlinearity is not actually present
when formally tested. But whether it is failing to see real nonlinearity,
or interpreting linearity as if it were nonlinearity, nongraphical methods
are a good addition to and typically even better than graphical methods
that rely on the subjective assessments of the perceiver. We cover some
nongraphical methods in the next two sections.

12.2 Polynomial Regression

12.2.1 Basic Principles

Polynomial regression fits curves to data by using regressors that are succes-
sive powers, such as X, X2, X3, and so forth. The “order” of the polynomial
is defined by the largest power in the polynomial. Figure 12.4 graphically
depicts four equations relating Y to X. The linear equation is the one we
have focused on throughout most of this book, where Y changes by the
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FIGURE 12.4. Some example polynomial models of the relationship between X and Y.

same amount as X increases by a fixed amount. A quadratic polynomial
would take the form Y = b0 + b1X + b2X2 and is thus of “second order,”
because two is the largest power of X. A quadratic polynomial allows only
a single “bend” in the relationship between X and Y, as in Figure 12.4.
Adding a third power of X (thus yielding a “third-order” polynomial) re-
sults in a cubic model: Y = b0+ b1X+ b2X2+ b3X3. This model allows for two
bends in the curve, as can be seen in Figure 12.4. It would be exceedingly
rare when using polynomial regression to add more than a third power
of a variable to a model, but it is possible. Figure 12.4 depicts a quartic
model, which by definition has a fourth power and thus is of the form
Y = b0 + b1X + b2X2 + b3X3 + b4X4. This function allows three bends in the
curve.

As Figure 12.4 depicts, the higher the order of the polynomial for X, the
more complex the curve relating X to Y can be. The shape of the curve is
also determined by the regression coefficients given to each of the powers
of the variable. A characteristic of a polynomial of second order or higher
is that the amount Y changes as X changes by a fixed unit depends on the
starting point of X. So adding one unit to X will have a different effect
on the amount Y changes depending on the value of X at which you start.
Indeed, this is an informal definition of a curvilinear relationship between
X and Y.
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Some people criticize polynomial regression as excessively mechanical.
Such critics argue that one should choose a curve whose shape makes sci-
entific sense, which a polynomial may not. This is certainly good practice
when possible. But polynomial regression can do a decent job representing
curvilinear relationships that may not conform exactly to other kinds of
functions (e.g., a logarithmic function; see section 12.4). Polynomial re-
gression is also very versatile, because the shape a polynomial takes can
be modified substantially by the amount of weight each power receives
in the generation of Y, and your regression program will figure out how
to weight each power in order to minimize SSresidual and thus maximize
the correlation between Y and Ŷ. Although it may be true that very few
nonlinear relationships are truly parabolic, taking a U or inverted U shape,
some nonlinear relationships between X and Y can be well described with
a quadratic function within the domain of measurement of X.

Polynomials can also be nice ways of dealing with nonlinearity in co-
variates. Even if the relationship between an independent variable X and
a dependent variable Y is linear, when those variables relate nonlinearly
to a covariate C, it is important to allow for that nonlinearity in order to
properly visualize and estimate the partial association between X and Y.
We wouldn’t typically care if the polynomial is a substantively or theoret-
ically meaningful representation of the nonlinear relationship between a
covariate and independent and dependent variables if it does a good job
at capturing that nonlinearity and thereby affords a better adjustment for
constructing measures of partial association between key variables in your
analysis.

Polynomial regression is often used as a means of testing for nonlinear-
ity in the relationship between X and Y. Because polynomials can describe
such a wide range of curves, a test of nonlinearity can be conducted by
determining if adding successive powers or sets of powers of X improves
the fit of the model to a statistically significant degree. The test described
in section 5.3.3 can be used for this purpose. We will see an example of this
in section 12.2.2.

When a variable X is included as a regressor along with various powers
of that variable, we usually think of that set of variables as a compound
variable representing X. So, for example, if you think that age is nonlinearly
related to something like attitudes toward gun control, you could use age
as well as age2 and perhaps even age3 as regressors in the model. Any
test involving age would involve all three of these. For instance, you
could test whether gun control is related to age while controlling for sex
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and income by adding age, age2, and age3 to a model of gun control that
already contains income and sex. An improvement in fit as indexed by
a statistically significant increase in R is evidence of a partial relationship
between age and gun control, without imposing the assumption that this
relationship is linear. But ordinarily, you would start with age and then
decide whether adding powers of age improves the fit of the model, because
it is easier to interpret linear relationships, and we wouldn’t want to add
an unnecessary complexity to a model unless the data (or relevant theory
or past literature) suggested it was necessary to do so.

You would almost never include higher powers of a regressor in a model
without including all of the lower powers as regressors as well. Consider,
for example, the equation Y = 2 + 3X2. This equation contains the second
power of X but not the first. As a result, the line for this equation must
pass through the point X = 0,Y = 2. This is very restrictive and not likely
to be consistent with your data. When you include X, the function is no
longer so restricted. Notice that Y = 2+ 3X2 could be written in equivalent
form as Y = 2 + 0X + X2. Leaving X out of the model but including X2 is
like forcing the regression coefficient for X to be zero, and this is not likely
to fit the data as well as if you let X’s regression coefficient be something
else. It is better to let your regression program figure out how to weight X
in tandem with X2 rather than imposing this constraint on the estimation
process.

12.2.2 An Example

We illustrate polynomial regression using the POLITICS data file, which
comes from a nationally representative survey of people living in the United
States at the time of data collection. The dependent variable Y is score
on a test of political knowledge (pknow), and we will estimate political
knowledge from frequency of use of traditional news sources (X), named
news in the data file. Participants in the study were asked three questions
about how many days (0 through 7) during the typical week they read the
newspaper, watch the national network news broadcast, and watch their
local televised news broadcast. Responses to these three questions were
averaged to produce the measure of traditional news use. We will look
for evidence of nonlinearity between news use and political knowledge,
while holding constant the respondent’s age (C1), sex (C2), and SES (C3,
labeled ses in the data, defined as the average of the person’s standardized
education level and income).
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FIGURE 12.5. A residual scatterplot depicting the association between political knowl-
edge and news use. The residuals are departures from estimated knowledge from a model
that includes sex, age, SES, and news use.

Regressing political knowledge on news use X and the covariates, but
without any higher powers of news use (without X2, X3, etc.), yields R =
0.566. The regression coefficient for news use is 0.265 and statistically
significant, t(335) = 2.214, p = .028, indicating that people who use the
news more frequently know more about politics. More specifically, two
people who differ by 1 day in their typical news use but are equal on the
covariates are estimated to differ by 0.265 units in their knowledge, with
the more frequent news user being more political knowledgeable. But the
meaningfulness of this depends on the partial relationship being linear.

Figure 12.5 is a residual scatterplot depicting the relationship between
covariate-adjusted political knowledge and unadjusted news use. You can
probably see some evidence of nonlinearity, as the residuals appear to be
larger (more positive) in the center of the X distribution than in the extremes
of X. But we should do a formal test.

When the square of news use is added to the model, the resulting model
is

Ŷ = 7.168 + 1.372X − 0.156X2 + 0.022C1 + 1.720C2 + 2.472C3 (12.1)
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The regression coefficient for the square of news use is statistically sig-
nificant, t(334) = −2.807, p = .005. This test is equivalent to the change in
the fit of the model when the square of news use is added to the model.
Without X2, R2 = 0.320, but with X2, R2 = 0.336. This is a statistically sig-
nificant increase, F(1, 334) = 7.879, p = .005. The increase in R2 of .016 is the
proportion of the variability in political knowledge uniquely attributable to
the square of news use. If we wanted the proportion attributable uniquely
to news use, we’d have to look at difference in the squared multiple corre-
lations between a model that excludes news use and the square of news use,
because news use is a compound variable in this model. Doing so, along
with a test of significance as described in section 5.3.3, yields a difference
of 0.026 in the two model R2s, F(2, 334) = 6.441, p = .002. So news use
uniquely accounts for about 2.6% of the variance in political knowledge.

Figure 12.6 visually depicts equation 12.1. This figure was generated
by setting C1, C2, and C3 to their sample means1 and plotting estimated
political knowledge for many values of news use (X and therefore X2). As
can be seen, holding age, SES, and sex constant, political knowledge is
estimated as higher among those moderate in their news use, with more
extreme users (less or more) estimated as lower in political knowledge. As
you can see, the curvilinear effect is quite large even though it was barely
visible in the partial scatterplot of Figure 12.5.

Just to make sure more complex curvilinearity is not missed, the cube
of news use (X3) was added to the model that includes news use and its
square. The cubed term was not significant, meaning that adding it to the
quadratic model does not improve the fit of the model to a statistically
significant degree.

12.2.3 The Meaning of the Regression Coefficients for
Lower-Order Regressors

We define a global property of a model as a property of the entire model,
while a local property applies to only part of the model. For instance, a
straight line relating X to Y has the same slope at all points, so the slope,
estimated by the regression coefficient for X, is a global property of the
model. But a curve defined by quadratic model that includes X and X2

as regressors has different slopes at different points and may even slope
downward in some sections but upward in others. Thus, the slope of

1It is legitimate to use the sample mean of a dichotomous variable when generating a plot
such as this, even if the mean has no inherent meaning. In this case, sex is coded 0 for
females and 1 for males, so the mean is the proportion of the sample that is male.
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FIGURE 12.6. A quadratic polynomial model of political knowledge from news use fre-
quency.

a curve defined by a quadratic model is a local property of the model.
But a quadratic model is either concave, with a slope that becomes more
positive as X increases, or convex, meaning that the slope is becoming more
negative as X increases. So the concavity or convexity of a quadratic model
is a global property of the model.

In a quadratic equation, it can be shown that if the regression coefficient
for X2 is positive, then the function is concave, but if this coefficient is neg-
ative, then the function is convex. It can also be shown that this regression
coefficient measures the curvature of the relationship between X and Y,
defined as the difference between the Ŷ value of at any X point and the
average of the two Ŷ values corresponding to the values of X one unit to
the left and one unit to the right. For instance, if Ŷ = 2X2 and we arbitrarily
use X = 5, then Ŷ = 32, 50, and 72 when X is 4, 5, and 6, respectively. We
then have (32 + 72)/2 − 50 = 2, which is the coefficient for X2. We would
find the same value of 2 if we chose any other X value besides 5. Thus, the
coefficient for X2 measures a global property of the model, and we shall
call X2 a global term in the regression.
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On the other hand, it can be shown that the coefficient of X in a quadratic
equation measures the slope of the curve at the single point where X = 0.
Readers who know calculus can see why this is so; if Ŷ = b0 + b1X + b2X2,
then the first derivative of this function is dŶ/dX = b1 + 2b2X, which equals
b1 when X = 0. In the political knowledge example, b1 = 1.372, and you
can see by inspecting Figure 12.6 that this is about the slope of the parabola
where it meets the Y-axis, when X = 0. Therefore, we call X a local term,
since its regression coefficient measures a local property of the model.

This logic applies to higher-order polynomials, though understanding
it requires knowledge of some calculus. For example, in a cubic model,
the regression coefficient for X3 is a global property of the model, but
the regression coefficients for X and X2 are local properties. In calculus
terms, the first derivative of a cubic model Ŷ = b0 + b1X + b2X2 + b3X3 is
dŶ/dX = b1 + 2b2X + 3b3X2. The first derivative is the slope of the curve
at given point X, and you can see that if you set X to 0 in the equation for
the first derivative, then you get b1. Thus, b1 is the slope of the curve when
X = 0; thus, it is a local property of a cubic regression model.

The second derivative of a cubic model is 2b2 + 6b3X. The second
derivative quantifies how quickly and in what direction the slope is changing
at a point X. This is sometimes called the acceleration of the function. If
the second derivative is positive, that means that the slope is increasing
as X is increasing in value. But if the second derivative is negative, that
means that the slope is decreasing in value as X is increasing. The larger
the second derivative ignoring sign, the faster the slope is changing. In this
case, if you set X to 0 in the equation for the second derivative, you get 2b2.
So b2 is one-half of the speed at which the slope is changing at the point
X = 0. This makes b2 a local property in a cubic regression model.

12.2.4 Centering Variables in Polynomial Regression

A variable is mean-centered by subtracting its mean from all measurements,
creating a new variable with a mean of zero. A variable can be mean-
centered relative to its sample mean, or relative to its population mean if
that happens to be known. There are two reasons why you might choose
to mean-center X in a polynomial regression involving powers of X.

First, if X is high relative to sX, then the successive powers X, X2,
X3, and so on, might correlate with each other so highly that rounding
error is produced, or you will reach the lower limit on the tolerance for a
regressor that your regression program allows. For instance, in a sample
of size N = 5 containing the values of X equal to 1,000, 1,001, 1,002, 1,003,
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and 1,004, the correlation between X and X2 is 0.99999983, which may
be large enough to start introducing nontrivial rounding error into some
regression computations. This can be corrected by centering X around its
mean before computing the powers of X. If we subtract 1,002 from these
five measurements (which is their mean), they become −2, −1, 0, 1, and 2,
and now the correlation between X and X2 is exactly zero. This can reduce
computational problems and allow your regression program to estimate
the model.

The second reason for mean-centering X before computing powers of
X is that the regression coefficient for X is then the effect of X on Y at the
mean of X, instead of when X = 0. This is likely to be more interpretable.
A proof of this point was given in section 12.2.3.

Mean-centering a variable has no effect on regression coefficients for
regressors or correlations when only first-order terms are used (e.g., X
itself). But the situation with polynomial regression is more complex.
Measures of simple relationship, such as correlations or simple regression
coefficients, are affected for all but the first-order terms. For instance, if five
measurements on X are 1, 2, 3, 4, and 5, then the five values of X2 are 1, 4,
9, 16, and 25. But if we subtract 5 points from X before computing X2, the
new X values are −4, −3, −2, −1, and 0, and the new values of X2 are 16,
9, 4, 1, and 0. Thus, the cases having the highest values on X2 originally
now have the lowest values. This, of course, will change the correlation
between X2 and other variables.

Measures of unique contribution for X or one of its powers, such as bj,
prj, srj, and the values of t or F that test their significance, are affected by
centering for all but the highest power term. This is illustrated in Figure
12.7. Consider curve A. Its equation is Y = 11.75−5.50X+0.75X2. The slope
of this curve is negative at X = 0 because Y is decreasing as X increases past
zero. Thus, the regression coefficient for X is negative (see section 12.2.3). If
we subtract 6 from X, then the curve shifts and becomes curve B in Figure
12.7, which has the same shape as curve A but is shifted horizontally
in space. The equation for this curve is Y = 5.75 + 3.50X + 0.75X2. Its
slope at X = 0 is the coefficient for X, which is now positive because Y is
increasing as X increases past X = 0. So centering X has changed the value
of the regression coefficient for X, but the regression coefficient for X2 is
unaffected.
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FIGURE 12.7. The effect of centering X on the regression coefficient for X in a quadratic
model.

12.2.5 Finding a Parabola’s Maximum or Minimum

Suppose you have estimated a model of the form Y = b0 + b1X + b2X2.
The model could contain additional regressors as well, without changing
the discussion that follows. However, the model should not include any
regressors formed as the product of X and some other variable. The reasons
for using a regressor that is a product of variables is discussed starting in
Chapter 13.

In such a model, the value of X that either maximizes or minimizes Y
(when all other variables are held constant, if the model contains additional
regressors) is

X =
−0.5b1

b2
(12.2)

Readers familiar with calculus will recognize this as the value at which the
first derivative of Y with respect to X is equal to zero. The first derivative
of a function of X with respect to X quantifies the amount Y is changing as
X changes at a particular value of X. In a parabola, there is a point at which
Y stops increasing or decreasing with changes in X and then “reverses
course,” such that if it was increasing with X, it now begins to decrease, or
if it were decreasing with X, it now begins to increase. This point is either
the minimum or maximum value. If the sign of b2 is positive, then this
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value is a minimum. If the sign of b2 is negative, then this is a maximum
value. But keep in mind that this point may not be within the range of the
observed data.

To illustrate, in the political knowledge example in section 12.2.2
we had b1 = 1.372 and b2 = −0.156. Applying equation 12.2 gives
X = −0.5(1.372)/ − 0.156 = 4.397. So we can say that holding constant ed-
ucation, age, sex, and SES, political knowledge is at its peak among those
who use traditional news sources a bit over 4 days per week. We know it
is a maximum and not a minimum because b2 is negative, and we can also
tell this from Figure 12.6.

12.3 Spline Regression

The scatterplot in Figure 12.8 depicts the association between two variables
X and Y. As can be seen, the relationship is complex, with Y increasing with
increasing X in some ranges of X, but decreasing Y with increasing X in
other ranges. After reading section 12.2, you might think a quartic function
would fit these data well. This would involving estimating Y from X, X2,
X3, and X4. Doing so results in Ŷ = 5.161 + 6.217X − 0.845X2 + 0.037X3 −
0.001X4, and R = 0.883. This function is depicted in Figure 12.8 with the
curve running through the scatterplot. It is apparent that even though
R is fairly large, there is quite a bit of room for improvement. Observe
that the vast majority of residuals are positive when X is between about 6
and 13, most are negative when X is between about 16 and 23, most are
again positive between 23 and 26, and then again mostly negative beyond
26. This model is consistently underestimating Y in some ranges of X but
overestimating Y in other ranges.

Spline regression is an alternative to polynomial regression. Segmented
regression might be a better term, as the methods we discuss here all focus
on fitting a set of models to various segments of the relationship between
X and Y. But we will stick with the traditional term spline regression. Spline
regression can model complex curves and do many other things, such as
fitting lines with different slopes in different ranges of X. It can also be used
when Y is expected to abruptly jump up or down at a specific value of X.

In this section, we introduce the fundamentals of spline regression,
focusing first on linear spline models, which approximate a complex curve
with a set of straight lines that are connected at joints. After describing these
fundamentals, we discuss polynomial spline regression, which connects
polynomials at joints. Polynomial splines are more versatile and therefore
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FIGURE 12.8. A scatterplot depicting a complex relationship and a quartic model super-
imposed.

more useful than linear splines, but you may find occasion to use linear
splines, and it is easier to understand polynomial spline models by first
learning how linear spline models work.

As a category of methods rather than a single method, spline regression
includes more complex variants than we describe here. For a discussion of
some of these more complex variants and their applications, see Ahlberg,
Nilson, and Walsh (1967), Greville (1969), and Marsh and Cormier (2002).
We focus only on methods that can be applied with an ordinary regression
program.

12.3.1 Linear Spline Regression

In its simplest form, linear spline regression is a method for fitting to data
a jagged line, like the solid line in Figure 12.9. Observe that this “curve”
is formed by the four line segments that are joined together. By increasing
the number of line segments, even extremely complex shapes can be fitted.
The user of linear spline regression chooses the values of the regressor X
but not the Y values that define the “joints” in a spline model. In Figure
12.9, these are marked J1, J2, and J3. These could be chosen after examining
a scatterplot, as we did in this example, or they could be chosen before
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FIGURE 12.9. A linear spline regression model with three joints.

examining the data if you had an a priori basis for expecting a change in
the relationship between X and Y at some values of X.

Spline regression using linear splines essentially estimates the slope
of each line segment relating X to Y by computing the slope of the first
segment and then the change in the slope at each joint. In Figure 12.9, the
slopes of the four line segments displayed are 0.926, −2.027, 1.594, and
−0.235, so a spline regression would estimate the changes in slope at J1, J2,
and J3 as −2.953, 3.621, and −1.829, respectively. These changes in slopes
will be manifested in the regression solution as the regression weights for
artificial variables created based on values of X.

To see how this is achieved, consider Figure 12.10. Line segment A,
which applies when X ≤ 4, is defined by the equation Y = 1.00 + 1.00X.
Line segment B applies when X > 4, and it is defined by Y = 13.00− 2.00X.
That is,

Y = 1.00 + 1.00X when X ≤ 4 (segment A)

Y = 13.00 − 2.00X when X > 4 (segment B)

Suppose we used the formula for line segment A to estimate all the Y
values, regardless of whether or not X was greater than 4. As can be seen
in Figure 12.10, doing so fits the Y values of the first four points perfectly,
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FIGURE 12.10. Why spline regression works.

but extending it beyond X = 4 (the dotted section of the line representing a
continuation of line segment A) overestimates the next two Y values by 3
and 6 units, respectively. What we want to do is find a way of integrating
the equations above into one equation that applies regardless of X.

Here is how we do it. Suppose we create a variable J1 set to 0 when X
is 4 or less, but set to X − 4 when X > 4. These values of J1 can be found on
the horizontal axis in Figure 12.10 below the values of X. Let e be defined
as the errors in the estimation of Y from the equation for line segment A:
1.00 + 1.00X. Notice that e = 0 when J1 = 0, e = −3 when J1 = 1, and e = −6
when J1 = 2. In other words, e = −3 × J1. So an equation that perfectly fits
the Y data would be

Ŷ = 1.00 + 1.00X − 3.00J1 (12.3)

This is the equation for the jagged line AB, and it integrates the equations
for segments A and B into one equation. Observe that the line segment A
has a slope of 1.00, and line segment B has a slope of−2.00, so the difference
between these slopes is−3.00, which is the coefficient for J1 in equation 12.3.
So by creating the variable J1 in this fashion, we were able to model the
amount the slope of the line relating X to Y changes once X is higher than
the location defining the joint. This example is atypical in that we do not
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normally achieve a perfect fit. But once the X values of the joints have been
selected, the regression program will fit the jagged line that minimizes the
sum of the squared residuals and maximizes R.

Returning to the more complex example in Figure 12.9, using this ap-
proach we can fit a series of line segments with different slopes for different
ranges of X but connected to each other at the joints. In Figure 12.9 there are
three joints at X values of 9, 18, and 26. So we construct three new variables
defined as X minus the joint location, but conditioned on X exceeding that
joint value. If X does not exceed the joint value, then that variable is set to
zero. In this example,

if X > 9, then J1 = X − 9 else J1 = 0

if X > 18, then J2 = X − 18 else J2 = 0

if X > 26, then J3 = X − 26 else J3 = 0

Once J1, J2, and J3 are created, then regressing Y on X, J1, J2, and J3

yields the equation

Ŷ = 11.628 + 0.926X − 2.953J1 + 3.621J2 − 1.829J3 (12.4)

The regression weight for X is the slope of the first line segment, and the
values of bj for J1, J2, and J3 equal the changes in slope at joints J1, J2, and
J3. As in other forms of regression, regression programs routinely provide
a test of significance for each bj. When bj represents a change in slope, we
are testing the null hypothesis of no change in slope. In this example, these
changes in slope at each joint are all statistically significant. Joints with
nonsignificant changes may be deleted, given that the results in such a case
suggest that there is no change in the size or direction of the association at
that joint.

For this model, R = 0.948,F(4, 95) = 209.101, p < .001. This is a decent
improvement from the quartic model (recall that in that model, R = 0.883),
and as can be seen by comparing Figure 12.8 and Figure 12.9, the linear
spline model does a better job estimating Y across the range of X. As
discussed in section 4.3.2, the F-ratio for this model tests the null hypothesis
that TR = 0. This can be interpreted as a test of the null hypothesis of no
relationship between X and Y, where X is a compound variable consisting
of X itself as well as J1, J2, and J3. We can test whether the relationship
between X and Y is linear against the null hypothesis that it is nonlinear
using the method in section 5.3.3. First estimate a model of Y from X alone.
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Then add the J variables to the model. A statistically significant increase
in R means that the linear spline model fits better than the ordinary linear
model. In this case, the model with just X has R = 0.263, whereas the
model with X and the three J variables has R = 0.948. This is a statistically
significant increase, F(3, 95) = 257.351, p < .001. The linear spline model
fits better than the simple linear model.

To better understand how this test works, consider that the model with
just X as a regressor is equivalent to the spline model but with the constraint
that all the regression weights for the J variables are equal to zero, meaning
no change in slope at the joints. If the spline model fits better, then allowing
for at least one joint with a change in slope produces a better-fitting model.

But we cannot use this test to compare the fit of this spline model
to the quartic model. This test works only when the model with more
variables (the spline model) contains all the same variables as the model
with fewer variables (the quartic model), plus at least one extra variable.
The J variables are not the same as the X2, X3, and X4 variables, so we can’t
formally test the significance of the difference in fit of these two models.

However, there is an alternative approach that can be used to assess the
relative value of the polynomial (X2, X3, and X4) and spline terms (the J
regressors). Combining these two models as

Ŷ = b0 + b1X + b2J1 + b3J2 + b4J3 + b5X2 + b6X3 + b7X4 (12.5)

yields R = .952 when applied to these data. We can ask how much the
polynomial terms add to fit by removing them from equation 12.5 and see-
ing if fit is significantly worse (which is the same as asking whether adding
the polynomial terms to the linear spline model significantly improves
fit). We already know that the linear spline model has R = 0.948. When
the polynomial terms are added to the model, the test from section 5.3.3,
which is appropriate here, does not quite achieve statistical significance,
F(3, 92) = 2.564, p = .059. But when only the linear spline terms are removed
from equation 12.5, the result is the quartic model, and we know that for
this model R = 0.883. This reduction in fit relative to the combined model
is statistically significant using this same test, F(3, 92) = 41.034, p < .001.
That is, the inclusion of the linear spline terms significantly improves the
fit of the model relative to when Y is modeled as a quartic function of X.
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12.3.2 Implementation in Statistical Software

Although spline regression is not built into any commonly used statistical
software packages of which we are aware, it can be implemented with any
regression program. Assuming X is in your data and named as such, the
SPSS code below constructs the three J variables in the four-segment linear
spline model described in section 12.3.1 and then estimates the model.

compute j1=0.

compute j2=0.

compute j3=0.

if (x>9) j1=x-9.

if (x>18) j2=x-18.

if (x>26) j3=x-26.

regression/dep=y/method=enter x j1 j2 j3.

Assuming the data reside in a file named SPLINE, the comparable SAS
code is

data spline;set spline;j1=0;j2=0;j3=0;

if (x>9) then j1=x-9;if (x>18) then j2=x-18;if (x>26) then j3=x-26;

run;

proc reg data=spline;

model y=x j1 j2 j3;

run;

and in STATA, use

gen j1=0

gen j2=0

gen j3=0

replace j1=x-9 if x>9

replace j2=x-18 if x>18

replace j3=x-26 if x>26

regress y x j1 j2 j3

The RLM macro documented in Appendix A has an option for linear
spline regression. The user specifies the location of the joints, and RLM
constructs all of the necessary J variables and then estimates the model.
For instance, the SPSS RLM command below is comparable to the SPSS
code above.
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rlm y=y/x=x/spline=9,18,26.

See Appendix A for information on the use of the spline option in RLM.

12.3.3 Polynomial Spline Regression

Linear spline regression works as means of modeling nonlinearity, because
any curve can be approximated by a set of line segments tied together at
joints. The more joints you include, the better the approximation to the
curvilinearity, in the same way that an octagon approximates a circle better
than does a pentagon. But one restriction of linear spline regression is that
between joints, the relationship between X and Y is fixed to be linear. As a
result, the curve ends up jagged, with “elbows” at the joints and potentially
very abrupt shifts in slope at the joints. A polynomial model doesn’t have
this problem, but a polynomial may not fit the relationship between X and
Y as well, as in this example.

Polynomial spline regression combines the strengths of both polyno-
mial and linear spline regression while eliminating the largest weakness of
each. This procedure fits a polynomial rather than a straight line within
each segment of the regressor. In principle, one could model the relation-
ship between joints with a polynomial of any order, but we focus only on
parabolic models (i.e., involving X2) between joints, because this is usually
sufficient. This will allow for different models of the relationship between
X and Y in the segments, but will produce a smooth curve (rather than a
line) between joints, with sets of smooth curves tied together at the joint
points and no jaggedness at the joints.

When we fitted straight lines between joints, we constructed new vari-
ables defined as a set of one or more new variables quantifying whether
and by how much X exceeded a particular joint value. To fit polynomials
between the joints, we follow a similar procedure except that the new vari-
ables are higher powers of X conditioned on X exceeding the joint value.
So if you want to fit a parabola between joint values, then the new variable
will be set to 0 if X is less than or equal to the joint value, but if X exceeds
the joint value, then set the new variable to the square of how much X
exceeds that joint value. For instance, if X ranged between 0 and 20 and
you placed a joint at 10, then J1 would be set to 0 unless X > 10. If X > 10,
then J1 would be set to (X − 10)2. You could include a higher additional
power if desired, such as (X − 10)3, if you wanted to fit a cubic function,
although in practice, squares will usually suffice. You would typically also
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include these same powers of X in the model to allow a polynomial of the
same order for the first segment.

The scatterplot in Figure 12.11 is the same as the scatterplot in Figures
12.8 and 12.9, with the quartic model superimposed as a dashed line. This
is a nice smooth curve, but as discussed already, its fit leaves something to
be desired. The solid line depicts a polynomial spline model, the splines
defined by second powers of X. Clearly, this does a better job describing
the relationship between X and Y. We now describe how this model was
constructed and estimated.

Examination of the scatterplot suggests that an inverted parabola may
characterize the relationship between X and Y for values of X below 11.
Between 11 and 16, the relationship appears linear or nearly so. Between
16 and 22, we can see what appears to be an upright parabola, but the left
side of an inverted parabola appears to describe the relationship between
X and Y between the values of 22 and 25. Finally, for X higher than 25, the
relationship between X and Y looks linear or nearly so. So we define the
five segments of the range of X with X values of 11, 16, 22, and 25. These
are depicted in Figure 12.11.

With these five segments defined, we then create four J variables set
to zero unless X exceeds the joint value. If X exceeds the joint value, then
the J variable is set to the square of the amount X exceeds that joint. The
algorithm for constructing these four J variables is

if X > 11, then J1 = (X − 11)2 else J1 = 0

if X > 16, then J2 = (X − 16)2 else J2 = 0

if X > 22, then J3 = (X − 22)2 else J3 = 0

if X > 25, then J4 = (X − 25)2 else J4 = 0

We then regress Y on X and X2 (which fits a parabola to the first segment),
as well as J1, J2, J3, and J4. The resulting model is

Ŷ = 8.688 + 2.884X − 0.207X2 + 0.148J1 + 0.513J2 − 0.972J3 + 0.507J4 (12.6)

with R = 0.956. It is represented by the solid line in Figure 12.11. Observe
it is a smooth curve, with no jaggedness at the joints as occurs when using
linear splines. The fit of this model is clearly superior to the quartic model,
and it is not obvious in looking at the scatterplot how this model could
be changed to improve it further. All of the regression coefficients in this
model are statistically significant, with p-values below .0001.
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FIGURE 12.11. A quartic model (dashed line) and a polynomial spine model with four
joints (solid line).

The code in section 12.3.2 can easily be modified to produce the J vari-
ables based on the algorithm above. For example, in SPSS, you can use

compute j1=0.

compute j2=0.

compute j3=0.

compute j4=0.

compute xsq=x*x.

if (x>11) j1=(x-11)*(x-11).

if (x>16) j2=(x-16)*(x-16).

if (x>22) j3=(x-22)*(x-22).

if (x>25) j4=(x-25)*(x-25).

regression/dep=y/method=enter x xsq j1 j2 j3 j4.

You may find with some statistics programs that the correlation between
the regressors is sufficiently large that the model won’t estimate, or the
program may remove one or more of the regressors to deal with the near
singularity (see section 17.3.3). If this occurs, center X around the mean of X
(i.e., subtract X from all X values) and set up the joints and J variables using
this transformed X. This likely will raise the tolerances of the regressors to
more acceptable levels and may allow your program to estimate the model.
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In section 12.3.1, we saw that the regression coefficients for the J vari-
ables quantify the difference in the slope relating X to Y between adjacent
segments. In this quadratic spline regression model, the regression co-
efficients for the J variables quantify the change in curvilinearity of the
relationship between X and Y between adjacent segments. Mathemati-
cally, this corresponds to the change in the regression coefficient for the
squared term between adjacent segments. To see how this works, consider
that for all values of X ≤ 11, J1 = J2 = J3 = J4 = 0. So equation 12.6 reduces
to Ŷ = 8.688 + 2.884X − 0.207X2. This is the model relating X to Y when
X ≤ 11. The regression coefficient for X2 is −0.207.

For the next segment defined as 11 < X ≤ 15, J1 = (X − 11)2 and
J2 = J3 = J4 = 0, so equation 12.6 simplifies to Ŷ = 8.688 + 2.884X −
0.207X2 + 0.148(X − 11)2. A little algebra results in

Ŷ = 8.688 + 2.884X − 0.207X2 + 0.148(X − 11)2

= 8.688 + 2.884X − 0.207X2 + 0.148(X2 − 22X + 121)

= 26.744 − 0.372X − 0.059X2

Thus, when 11 < X ≤ 16, the model relating Y to X is Ŷ = 26.744− 0.372X−
0.059X2. The regression coefficient for X2 is −0.059, which is a change of
0.148 relative to the regression coefficient for X in the segment defined by
X ≤ 11. Notice that the regression coefficient for J1 is 0.148. It is statistically
significant from zero. If it were not statistically significant, then J1 could
be excluded from the model, because this would mean that allowing for a
shift in the curvilinearity of the relationship between X and Y at this joint
does not improve the fit of the model to a statistically significant degree.

Using this same logic and algebra for each segment produces a quadratic
model for each segment, with the regression coefficient for successive J
variables quantifying the difference in the regression coefficient for X2 in a
given segment relative to the prior segment. These changes add up cumu-
latively, so you can derive the weight for X2 for any segment by starting
with the regression coefficient for X2 and then adding up the regression
coefficients for each successive J variable, stopping once you reach the de-
sired segment. For example, the regression coefficient for X2 for the fourth
segment (X > 22 ≤ 25) is 0.207 + 0.148 + 0.513 − 0.972 = −0.518. You can
see in Figure 12.11 that, indeed, the model in this segment looks like the
left half of a downward pointing parabola, consistent with a negative co-
efficient for X2. And for the segment defined as X > 25, the weight for X2
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is 0.207 + 0.148 + 0.513 − 0.972 + 0.507 = −0.011. This too is consistent with
Figure 12.11. Observe that the regression line is nearly straight in the last
segment, as you would expect for a polynomial model with such a small
weight for the squared term.

12.3.4 Covariates, Weak Curvilinearity, and Choosing Joints

In the examples of spline regression we have described, there were no co-
variates, and we chose where to locate the joints by eyeballing a scatterplot.
Covariates are easily added to a spline regression model simply by includ-
ing them as regressors, and no modification to the procedure is needed. But
we saw in section 12.1.2 that nonlinearity in the partial association between
X and Y may be hard to see unless you construct the right scatterplot. And
in real data, nonlinearity in the simple or partial association between X and
Y may be so weak that it can’t be detected with the eye even in the proper
scatterplot. In such cases, you may not be able to eyeball a scatterplot and
figure out where to locate the joints.

We don’t have any silver bullet solutions to this problem, but is impor-
tant to acknowledge the problem exists. If your sample size is sufficiently
large, one option is to use a large number of joints equally dispersed across
the range of X and then estimate a linear or polynomial spline model as
discussed here. As you know, the p-values for the regression coefficients
for the J variables can be used to decide whether a change in slope or
curvilinearity is needed at specific joints. If not, those joints can be deleted.
You can iteratively apply this procedure, adding or removing joints until
you settle on a model that is satisfying to you. There are more advanced
versions of spline regression that don’t require the joints to be specified by
the analyst but, rather, are derived mathematically from the data. You can
read about some of these methods in the literature on spline regression,
including the references we provided earlier in this chapter.

When you choose joints by eyeballing a scatterplot or using an ex-
ploratory method such as that just described, the concern is overfitting the
data. Choosing joints by examining the data will tend to increase the vari-
ance explained by X. When X is a covariate, this produces a conservative
bias into tests on independent variables. But if X is an independent vari-
able, then the bias is toward exaggerating the importance of X in explaining
variation in Y, and the nonlinearity captured by your spline model may
not replicate in another sample.

But joint values need not always be chosen arbitrarily or by exploring
the data and looking at scatterplots for visual evidence of transitions in the
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relationship. You may have some a priori basis for choosing certain joint
values. For example, if X were time and Y were something like a stock
price, you might know that at a certain point in time (perhaps even a point
in time of your choosing), some event happened that you think would
change the trajectory for Y, making it increase or decrease in a particular
manner that is different from what it was before that point in time. Or
perhaps X is score on some kind of psychological test, such as a test of
depression. If you assume, believe, or hypothesize that the relationship
between depression and some dependent variable of interest is different
for people who are below a certain score on the test relative to those who
are above it, then that score would be natural choice for a joint in a spline
regression model.

12.4 Transformations of Dependent Variables or
Regressors

The natural relationship between two variables may be nonlinear, but some-
times nonlinear relationships can be made linear or nearly so by some kind
of transformation of one of the variables. There are many kinds of transfor-
mations, but we focus on monotonic transformations here. A transformation
is monotonic if the original and transformed values have the same rank or-
der, such that the highest value on the original variable is the highest after
transformation, the second highest original value is the second highest
transformed value, and so forth. Technically, we should distinguish be-
tween positive and negative monotonic transformations. What we have
described just now is positive monotonic. A negative monotonic transfor-
mation exactly reverses the ranks, so that the highest original value is the
lowest transformed value, the second highest original is the second lowest
transformed value, and so forth. Unless we say otherwise, when we say
monotonic assume we are talking about positive monotonic.

Monotonic transformations of a variable may produce as many as three
benefits at once. The first we have already discussed: Two variables may be
nonlinearly related in their original form, but linear if one or both is trans-
formed monotonically. This often simplifies interpretation of regression
results. The second benefit is that a transformation may improve the pre-
diction of one variable from another. Third, they can make residuals more
normally distributed. Normality of the errors in estimation (manifested
as residuals in a specific analysis) is an assumption of linear regression
analysis.
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12.4.1 Logarithmic Transformation

A logarithmic transformation can be used when the importance of the dif-
ference between two values is judged to be proportional to their ratio rather
than their absolute difference. For instance, if we are studying the effect
of an animal’s size on some feature of its behavior or structure, we might
consider the difference between body weights of 100 and 200 kilograms to
be no more important than a difference between 1 and 2 kilograms. In abso-
lute terms, a difference of 100 kilograms is 100 times larger than a difference
of 1 kilogram, but both ratios are 2:1. Whereas weight may be nonlinearly
related to many things (e.g., brain size), a logarithmic transformation may
make the relationship linear. Or if the difference between incomes of $50,000
and $100,000 has the same average effect on attitudes toward wealth as the
difference between $10,000 and $20,000, then income will have a nonlinear
relationship with attitude, but a logarithmic transformation can make the
relationship linear.

Only positive numbers have logarithms, but there are many kinds of
logarithms. The most commonly used logarithms are the common log-
arithm, also called a base 10 log and often denoted log, and the natural
logarithm or base e log, most often denoted as ln. The common logarithm
of a number X is the power of 10, which equals X. For instance, the com-
mon logarithms of 10, 100, and 1,000 are, respectively, 1, 2, and 3, because
101 = 10, 102 = 100, and 103 = 1,000.

Whereas a common logarithm is a power of 10, a natural logarithm is
a power of e, where e is approximately 2.718828. Like the number pi, e
cannot be written exactly. The natural logs of 10, 100, and 1,000 are, respec-
tively, 2.30259, 4.60517, and 9.21034, because e2.30259 = 10, e4.60516 = 100,
and e9.21034 = 1, 000. Natural logarithms are proportional to common loga-
rithms; for any number X, the natural logarithm of X equals approximately
2.302589 times the common logarithm of X.

An interesting property of natural logarithms is that when two numbers
A and B are nearly equal, the difference between their natural logarithms
approximately equals the proportional difference between them. For in-
stance, 63 is 5% larger than 60, and their natural logarithms are 4.1431 and
4.0943, which differ by .0488, which is close to 0.05. Thus, if the weights
of two animals differed by 0.05 on a natural logarithm scale, you would
know without calculation that one was about 5% heavier than the other.
As two numbers approach equality, this relationship approaches exactness.
For instance, the natural logarithms of 1,000 and 1,001 differ by .0009995,
which to four significant digits is .001, or 1/1,000.
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FIGURE 12.12. A log tranformation of X and Y can turn a nonlinear relationship into a
linear relationship.

When a scatterplot depicting the association between two variables
appears nonlinear, for some forms of nonlinearity a logarithmic transfor-
mation of X or Y may make the relationship more linear. If small changes in
X result in large positive changes in Y at first but then the size of the change
in Y levels off as X increases, as in Figure 12.12, panel A, on the left, then a
logarithmic transformation of X may reduce or eliminate the nonlinearity.
The scatterplot on the right of Figure 12.12, panel A, depicts the association
between X and Y after a natural log transformation of X. As you can see,
the relationship appears more linear after transformation than before.

But if small changes in X result in little changes in Y at first, but the
change in Y with a change in X accelerates rapidly, as in Figure 12.12, panel
B, on the left, then a logarithmic transformation of Y rather than X may
reduce the nonlinearity. A scatterplot of the natural log of Y against X can
be seen in the scatterplot on the right side of Figure 12.12, panel B; the
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relationship between X and Y following the transformation now appears
to be linear rather than nonlinear.

When using a logarithmic transformation, we often don’t have to make
distinctions between the different forms. If the common logarithms of X are
linearly related to another variable Y, then the natural logarithms will be
also. Thus, if we say that a logarithmic transformation makes a relationship
linear, we need not specify which type of logarithm. But when reporting
the results of an analysis that uses a transformation, it is a good idea to be
explicit about what transformation was employed.

12.4.2 The Box–Cox Transformation

Box and Cox (1964) describe a family of transformations that includes
logarithmic transformations as special cases. In this approach, one chooses
a constant m, which may be any positive or negative real number (i.e.,
not zero). Then one transforms the original variable X to a transformed
variable XT by the equation

XT =
Xm − 1

m
(12.7)

In practice, you can try different values of m and see which one is best
by some criterion of interest, such as making some extreme scores less
extreme, improving linearity, or eliminating the need for an interaction (a
concept introduced in Chapter 13). Although we use X in equation 12.7,
the transformation can be applied to dependent variables, independent
variables, or covariates.

Figure 12.13 displays the results of the transformation for 0 < X ≤ 5 for
different values of m. The dashed line corresponding to m = 1 reflects no
transformation (actually, when m = 1, XT = X − 1). X = 1 is a pivoting
point in the transformation, and what happens to the relative sizes of X
after transformation depends on the distance from 1 and the value of m.

Define measurement expansion as making differences between values of X
larger after the transformation, and define measurement compression as mak-
ing differences between values of X smaller after transformation. Given
these definitions, setting m > 1 results in measurement expansion when
X > 1, with the expansion larger with higher values of m. But when
X < 1, measurement compression is the result. But when m < 1, the trans-
formation has the opposite effect on X. When X > 1, measurements are
compressed, with greater compression occurring with smaller values of m.
But when X < 1, measurement expansion occurs.
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FIGURE 12.13. The Box–Cox tranformation as a function of m.

By making m arbitrarily close to zero (either positive or negative), we
can make the Box–Cox transformation approach arbitrarily close to a loga-
rithmic transformation. Thus, we can think of a logarithmic transformation
as the special case of the Box–Cox transformation in which m = 0.

A Box–Cox transformation requires all measurements on the original
variable to be positive since a negative number cannot be raised to a non-
integer power. But if all measurements are negative we lose no informa-
tion by replacing the original measurements with their absolute values
before making the transformation. Thus, the requirement really is that all
measurements have the same sign. This usually means that all measure-
ments in the population must have the same sign, not just the measurements
themselves, because inferences to the population have no meaning if some
measurements in the population cannot be transformed.

Could one add points to a variable to make all its measurements have
the same sign? Theoretically, a Box–Cox transformation is scientifically
meaningful only if the original scale is a ratio scale—a scale with a mean-
ingful zero point, so that it is meaningful to talk abut the ratios of two
measurements. Thus, for instance, height and weight are ratio scales, but
an attitude scale running from 1 to 9, with 1 denoting “very negative” and
9 denoting “very positive,” is not. But in practice this restriction is not
very important when using Box–Cox, because the effect of changing m is
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often very similar to adding a constant to X before transformation. For
instance, consider five cases scoring 1, 2, 3, 4, and 5 on a variable X. If
we set m = 0.5, these five values transform to 0, 0.8284, 1.4641, 2.0000,
and 2.4721, respectively. Thus, the second, third, and fourth transformed
values are, respectively, 33.5, 59.2, and 80.9% of the distance from the first
transformed value to the last. But if we add 7.841 to each of the original
scores, then apply a Box–Cox transformation using m = −1, the percentages
are nearly identical to the previous ones, now being 32.6, 59.2, and 81.3%.
Thus, using m = 0.5 is nearly equivalent to adding 7.841 to each score and
then using m = −1. Since trying different values of m is often very similar
to adding different positive and negative constants to the original scores
before making the transformation, the original zero point does not seem
particularly sacrosanct.

12.5 Chapter Summary

Linear regression analysis can be used to model relationships between
variables even when those relationships are not linear. It is always worth
checking for nonlinearity by constructing a scatterplot, but it is important to
construct the right scatterplot. The residual scatterplot is the best choice for
detecting nonlinearity between X and Y when a model contains covariates.
In a residual scatterplot, the residuals in the estimation of Y from X and
the covariates are plotted against X. But even with the help of a residual
scatterplot, the human eye is not very good at detecting relationships, so
such eyeballing should be accompanied by some kind of formal analysis of
nonlinearity.

Polynomial regression analysis is a versatile approach to testing for
nonlinearity between X and Y, as well as modeling nonlinear relationships.
This method involves estimating Y from X and successive powers of X, such
as X2 and, if desired, X3 and (rarely) X4. A statistically significant regression
coefficient for one of the higher powers of X implies nonlinearity, as does
an incremental increase in the fit of the model when one or more powers
of X is added. Interpretation of the regression coefficients is complex and
aided with an understanding of calculus. Most important is that in a model
with a power of X higher than 1, the regression coefficient for X is a local
term of the model and quantifies the relationship between X and Y when
X = 0. Higher-order terms are interpreted in terms of changes in rates of
changes of Y as X is changing.
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Spline regression can be used to fit a jagged line to data. Any curve can
be approximated by a set of jagged lines, and sometimes a spline model will
fit better than a polynomial, because spline models better capture abrupt
shifts in the relationship between X and Y as X increases or decreases.
Spline and polynomial regression can be combined into polynomial spline
regression. This involves estimating and tying together polynomials at
various points in the distribution of X, thereby increasing the complexity
of the kinds of curves that can be estimated.

Some nonlinear relationships can be made linear or nearly so through
the use of a transformation, and transformations can sometimes help in
meeting the other assumptions of regression. Logarithmic transformations
of X and Y can be used in different circumstances, depending on the form
of nonlinearity. A logarithmic transformation is a special form of the more
general Box–Cox transformation. Using this transformation, the analyst
selects an exponent in the function that produces the most appealing trans-
formation, as defined by how well it makes a nonlinear relationship linear
or removes skew or heteroscedasticity in the errors in estimation, for in-
stance.

One could define a nonlinear relationship as one in which the relation-
ship between X and Y depends on X. This could be thought of as a special
kind of moderation, the topic of the next two chapters. With nonlinearity,
X moderates its own effect on Y. In the following chapter we introduce
how to build flexibility into a regression analysis by allowing the effect of
a regressor X on Y to vary linearly with another regressor in the model.
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